Metamath Proof Explorer


Theorem vtoclgaf

Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 17-Feb-2006) (Revised by Mario Carneiro, 10-Oct-2016)

Ref Expression
Hypotheses vtoclgaf.1
|- F/_ x A
vtoclgaf.2
|- F/ x ps
vtoclgaf.3
|- ( x = A -> ( ph <-> ps ) )
vtoclgaf.4
|- ( x e. B -> ph )
Assertion vtoclgaf
|- ( A e. B -> ps )

Proof

Step Hyp Ref Expression
1 vtoclgaf.1
 |-  F/_ x A
2 vtoclgaf.2
 |-  F/ x ps
3 vtoclgaf.3
 |-  ( x = A -> ( ph <-> ps ) )
4 vtoclgaf.4
 |-  ( x e. B -> ph )
5 1 nfel1
 |-  F/ x A e. B
6 5 2 nfim
 |-  F/ x ( A e. B -> ps )
7 eleq1
 |-  ( x = A -> ( x e. B <-> A e. B ) )
8 7 3 imbi12d
 |-  ( x = A -> ( ( x e. B -> ph ) <-> ( A e. B -> ps ) ) )
9 1 6 8 4 vtoclgf
 |-  ( A e. B -> ( A e. B -> ps ) )
10 9 pm2.43i
 |-  ( A e. B -> ps )