Step |
Hyp |
Ref |
Expression |
1 |
|
biimp |
|- ( ( ph <-> ps ) -> ( ph -> ps ) ) |
2 |
1
|
imim2i |
|- ( ( x = A -> ( ph <-> ps ) ) -> ( x = A -> ( ph -> ps ) ) ) |
3 |
2
|
alimi |
|- ( A. x ( x = A -> ( ph <-> ps ) ) -> A. x ( x = A -> ( ph -> ps ) ) ) |
4 |
|
spcimgft |
|- ( ( ( F/_ x A /\ F/ x ps ) /\ A. x ( x = A -> ( ph -> ps ) ) ) -> ( A e. V -> ( A. x ph -> ps ) ) ) |
5 |
3 4
|
sylan2 |
|- ( ( ( F/_ x A /\ F/ x ps ) /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( A e. V -> ( A. x ph -> ps ) ) ) |
6 |
5
|
com23 |
|- ( ( ( F/_ x A /\ F/ x ps ) /\ A. x ( x = A -> ( ph <-> ps ) ) ) -> ( A. x ph -> ( A e. V -> ps ) ) ) |
7 |
6
|
impr |
|- ( ( ( F/_ x A /\ F/ x ps ) /\ ( A. x ( x = A -> ( ph <-> ps ) ) /\ A. x ph ) ) -> ( A e. V -> ps ) ) |
8 |
7
|
3impia |
|- ( ( ( F/_ x A /\ F/ x ps ) /\ ( A. x ( x = A -> ( ph <-> ps ) ) /\ A. x ph ) /\ A e. V ) -> ps ) |