Step |
Hyp |
Ref |
Expression |
1 |
|
elisset |
|- ( A e. V -> E. z z = A ) |
2 |
|
nfv |
|- F/ z F/_ x A |
3 |
|
nfnfc1 |
|- F/ x F/_ x A |
4 |
|
nfcvd |
|- ( F/_ x A -> F/_ x z ) |
5 |
|
id |
|- ( F/_ x A -> F/_ x A ) |
6 |
4 5
|
nfeqd |
|- ( F/_ x A -> F/ x z = A ) |
7 |
6
|
nfnd |
|- ( F/_ x A -> F/ x -. z = A ) |
8 |
|
nfvd |
|- ( F/_ x A -> F/ z -. x = A ) |
9 |
|
eqeq1 |
|- ( z = x -> ( z = A <-> x = A ) ) |
10 |
9
|
a1i |
|- ( F/_ x A -> ( z = x -> ( z = A <-> x = A ) ) ) |
11 |
|
notbi |
|- ( ( z = A <-> x = A ) <-> ( -. z = A <-> -. x = A ) ) |
12 |
10 11
|
syl6ib |
|- ( F/_ x A -> ( z = x -> ( -. z = A <-> -. x = A ) ) ) |
13 |
|
biimp |
|- ( ( -. z = A <-> -. x = A ) -> ( -. z = A -> -. x = A ) ) |
14 |
12 13
|
syl6 |
|- ( F/_ x A -> ( z = x -> ( -. z = A -> -. x = A ) ) ) |
15 |
2 3 7 8 14
|
cbv1v |
|- ( F/_ x A -> ( A. z -. z = A -> A. x -. x = A ) ) |
16 |
|
equcomi |
|- ( x = z -> z = x ) |
17 |
|
biimpr |
|- ( ( -. z = A <-> -. x = A ) -> ( -. x = A -> -. z = A ) ) |
18 |
16 12 17
|
syl56 |
|- ( F/_ x A -> ( x = z -> ( -. x = A -> -. z = A ) ) ) |
19 |
3 2 8 7 18
|
cbv1v |
|- ( F/_ x A -> ( A. x -. x = A -> A. z -. z = A ) ) |
20 |
15 19
|
impbid |
|- ( F/_ x A -> ( A. z -. z = A <-> A. x -. x = A ) ) |
21 |
|
alnex |
|- ( A. z -. z = A <-> -. E. z z = A ) |
22 |
|
alnex |
|- ( A. x -. x = A <-> -. E. x x = A ) |
23 |
20 21 22
|
3bitr3g |
|- ( F/_ x A -> ( -. E. z z = A <-> -. E. x x = A ) ) |
24 |
23
|
con4bid |
|- ( F/_ x A -> ( E. z z = A <-> E. x x = A ) ) |
25 |
1 24
|
syl5ib |
|- ( F/_ x A -> ( A e. V -> E. x x = A ) ) |
26 |
25
|
ad2antrr |
|- ( ( ( F/_ x A /\ F/ x ps ) /\ ( A. x ( x = A -> ( ph <-> ps ) ) /\ A. x ph ) ) -> ( A e. V -> E. x x = A ) ) |
27 |
26
|
3impia |
|- ( ( ( F/_ x A /\ F/ x ps ) /\ ( A. x ( x = A -> ( ph <-> ps ) ) /\ A. x ph ) /\ A e. V ) -> E. x x = A ) |
28 |
|
biimp |
|- ( ( ph <-> ps ) -> ( ph -> ps ) ) |
29 |
28
|
imim2i |
|- ( ( x = A -> ( ph <-> ps ) ) -> ( x = A -> ( ph -> ps ) ) ) |
30 |
29
|
com23 |
|- ( ( x = A -> ( ph <-> ps ) ) -> ( ph -> ( x = A -> ps ) ) ) |
31 |
30
|
imp |
|- ( ( ( x = A -> ( ph <-> ps ) ) /\ ph ) -> ( x = A -> ps ) ) |
32 |
31
|
alanimi |
|- ( ( A. x ( x = A -> ( ph <-> ps ) ) /\ A. x ph ) -> A. x ( x = A -> ps ) ) |
33 |
|
19.23t |
|- ( F/ x ps -> ( A. x ( x = A -> ps ) <-> ( E. x x = A -> ps ) ) ) |
34 |
33
|
adantl |
|- ( ( F/_ x A /\ F/ x ps ) -> ( A. x ( x = A -> ps ) <-> ( E. x x = A -> ps ) ) ) |
35 |
32 34
|
syl5ib |
|- ( ( F/_ x A /\ F/ x ps ) -> ( ( A. x ( x = A -> ( ph <-> ps ) ) /\ A. x ph ) -> ( E. x x = A -> ps ) ) ) |
36 |
35
|
imp |
|- ( ( ( F/_ x A /\ F/ x ps ) /\ ( A. x ( x = A -> ( ph <-> ps ) ) /\ A. x ph ) ) -> ( E. x x = A -> ps ) ) |
37 |
36
|
3adant3 |
|- ( ( ( F/_ x A /\ F/ x ps ) /\ ( A. x ( x = A -> ( ph <-> ps ) ) /\ A. x ph ) /\ A e. V ) -> ( E. x x = A -> ps ) ) |
38 |
27 37
|
mpd |
|- ( ( ( F/_ x A /\ F/ x ps ) /\ ( A. x ( x = A -> ( ph <-> ps ) ) /\ A. x ph ) /\ A e. V ) -> ps ) |