Step |
Hyp |
Ref |
Expression |
1 |
|
vtoclr.1 |
|- Rel R |
2 |
|
vtoclr.2 |
|- ( ( x R y /\ y R z ) -> x R z ) |
3 |
1
|
brrelex12i |
|- ( A R B -> ( A e. _V /\ B e. _V ) ) |
4 |
1
|
brrelex2i |
|- ( B R C -> C e. _V ) |
5 |
|
breq1 |
|- ( x = A -> ( x R y <-> A R y ) ) |
6 |
5
|
anbi1d |
|- ( x = A -> ( ( x R y /\ y R C ) <-> ( A R y /\ y R C ) ) ) |
7 |
|
breq1 |
|- ( x = A -> ( x R C <-> A R C ) ) |
8 |
6 7
|
imbi12d |
|- ( x = A -> ( ( ( x R y /\ y R C ) -> x R C ) <-> ( ( A R y /\ y R C ) -> A R C ) ) ) |
9 |
8
|
imbi2d |
|- ( x = A -> ( ( C e. _V -> ( ( x R y /\ y R C ) -> x R C ) ) <-> ( C e. _V -> ( ( A R y /\ y R C ) -> A R C ) ) ) ) |
10 |
|
breq2 |
|- ( y = B -> ( A R y <-> A R B ) ) |
11 |
|
breq1 |
|- ( y = B -> ( y R C <-> B R C ) ) |
12 |
10 11
|
anbi12d |
|- ( y = B -> ( ( A R y /\ y R C ) <-> ( A R B /\ B R C ) ) ) |
13 |
12
|
imbi1d |
|- ( y = B -> ( ( ( A R y /\ y R C ) -> A R C ) <-> ( ( A R B /\ B R C ) -> A R C ) ) ) |
14 |
13
|
imbi2d |
|- ( y = B -> ( ( C e. _V -> ( ( A R y /\ y R C ) -> A R C ) ) <-> ( C e. _V -> ( ( A R B /\ B R C ) -> A R C ) ) ) ) |
15 |
|
breq2 |
|- ( z = C -> ( y R z <-> y R C ) ) |
16 |
15
|
anbi2d |
|- ( z = C -> ( ( x R y /\ y R z ) <-> ( x R y /\ y R C ) ) ) |
17 |
|
breq2 |
|- ( z = C -> ( x R z <-> x R C ) ) |
18 |
16 17
|
imbi12d |
|- ( z = C -> ( ( ( x R y /\ y R z ) -> x R z ) <-> ( ( x R y /\ y R C ) -> x R C ) ) ) |
19 |
18 2
|
vtoclg |
|- ( C e. _V -> ( ( x R y /\ y R C ) -> x R C ) ) |
20 |
9 14 19
|
vtocl2g |
|- ( ( A e. _V /\ B e. _V ) -> ( C e. _V -> ( ( A R B /\ B R C ) -> A R C ) ) ) |
21 |
3 4 20
|
syl2im |
|- ( A R B -> ( B R C -> ( ( A R B /\ B R C ) -> A R C ) ) ) |
22 |
21
|
imp |
|- ( ( A R B /\ B R C ) -> ( ( A R B /\ B R C ) -> A R C ) ) |
23 |
22
|
pm2.43i |
|- ( ( A R B /\ B R C ) -> A R C ) |