Step |
Hyp |
Ref |
Expression |
1 |
|
vtsval.n |
|- ( ph -> N e. NN0 ) |
2 |
|
vtsval.x |
|- ( ph -> X e. CC ) |
3 |
|
vtsval.l |
|- ( ph -> L : NN --> CC ) |
4 |
1 2 3
|
vtsval |
|- ( ph -> ( ( L vts N ) ` X ) = sum_ a e. ( 1 ... N ) ( ( L ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. X ) ) ) ) ) |
5 |
|
fzfid |
|- ( ph -> ( 1 ... N ) e. Fin ) |
6 |
3
|
adantr |
|- ( ( ph /\ a e. ( 1 ... N ) ) -> L : NN --> CC ) |
7 |
|
fz1ssnn |
|- ( 1 ... N ) C_ NN |
8 |
7
|
a1i |
|- ( ph -> ( 1 ... N ) C_ NN ) |
9 |
8
|
sselda |
|- ( ( ph /\ a e. ( 1 ... N ) ) -> a e. NN ) |
10 |
6 9
|
ffvelrnd |
|- ( ( ph /\ a e. ( 1 ... N ) ) -> ( L ` a ) e. CC ) |
11 |
|
ax-icn |
|- _i e. CC |
12 |
|
2cn |
|- 2 e. CC |
13 |
|
picn |
|- _pi e. CC |
14 |
12 13
|
mulcli |
|- ( 2 x. _pi ) e. CC |
15 |
11 14
|
mulcli |
|- ( _i x. ( 2 x. _pi ) ) e. CC |
16 |
15
|
a1i |
|- ( ( ph /\ a e. ( 1 ... N ) ) -> ( _i x. ( 2 x. _pi ) ) e. CC ) |
17 |
9
|
nncnd |
|- ( ( ph /\ a e. ( 1 ... N ) ) -> a e. CC ) |
18 |
2
|
adantr |
|- ( ( ph /\ a e. ( 1 ... N ) ) -> X e. CC ) |
19 |
17 18
|
mulcld |
|- ( ( ph /\ a e. ( 1 ... N ) ) -> ( a x. X ) e. CC ) |
20 |
16 19
|
mulcld |
|- ( ( ph /\ a e. ( 1 ... N ) ) -> ( ( _i x. ( 2 x. _pi ) ) x. ( a x. X ) ) e. CC ) |
21 |
20
|
efcld |
|- ( ( ph /\ a e. ( 1 ... N ) ) -> ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. X ) ) ) e. CC ) |
22 |
10 21
|
mulcld |
|- ( ( ph /\ a e. ( 1 ... N ) ) -> ( ( L ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. X ) ) ) ) e. CC ) |
23 |
5 22
|
fsumcl |
|- ( ph -> sum_ a e. ( 1 ... N ) ( ( L ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. X ) ) ) ) e. CC ) |
24 |
4 23
|
eqeltrd |
|- ( ph -> ( ( L vts N ) ` X ) e. CC ) |