Step |
Hyp |
Ref |
Expression |
1 |
|
vtsval.n |
|- ( ph -> N e. NN0 ) |
2 |
|
vtsval.x |
|- ( ph -> X e. CC ) |
3 |
|
vtsprod.s |
|- ( ph -> S e. NN0 ) |
4 |
|
vtsprod.l |
|- ( ph -> L : ( 0 ..^ S ) --> ( CC ^m NN ) ) |
5 |
|
ax-icn |
|- _i e. CC |
6 |
5
|
a1i |
|- ( ph -> _i e. CC ) |
7 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
8 |
|
picn |
|- _pi e. CC |
9 |
8
|
a1i |
|- ( ph -> _pi e. CC ) |
10 |
7 9
|
mulcld |
|- ( ph -> ( 2 x. _pi ) e. CC ) |
11 |
6 10
|
mulcld |
|- ( ph -> ( _i x. ( 2 x. _pi ) ) e. CC ) |
12 |
11 2
|
mulcld |
|- ( ph -> ( ( _i x. ( 2 x. _pi ) ) x. X ) e. CC ) |
13 |
12
|
efcld |
|- ( ph -> ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. X ) ) e. CC ) |
14 |
1 3 13 4
|
breprexp |
|- ( ph -> prod_ a e. ( 0 ..^ S ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. X ) ) ^ b ) ) = sum_ m e. ( 0 ... ( S x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` S ) m ) ( prod_ a e. ( 0 ..^ S ) ( ( L ` a ) ` ( c ` a ) ) x. ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. X ) ) ^ m ) ) ) |
15 |
1
|
adantr |
|- ( ( ph /\ a e. ( 0 ..^ S ) ) -> N e. NN0 ) |
16 |
2
|
adantr |
|- ( ( ph /\ a e. ( 0 ..^ S ) ) -> X e. CC ) |
17 |
4
|
ffvelrnda |
|- ( ( ph /\ a e. ( 0 ..^ S ) ) -> ( L ` a ) e. ( CC ^m NN ) ) |
18 |
|
elmapi |
|- ( ( L ` a ) e. ( CC ^m NN ) -> ( L ` a ) : NN --> CC ) |
19 |
17 18
|
syl |
|- ( ( ph /\ a e. ( 0 ..^ S ) ) -> ( L ` a ) : NN --> CC ) |
20 |
15 16 19
|
vtsval |
|- ( ( ph /\ a e. ( 0 ..^ S ) ) -> ( ( ( L ` a ) vts N ) ` X ) = sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( b x. X ) ) ) ) ) |
21 |
|
fzssz |
|- ( 1 ... N ) C_ ZZ |
22 |
|
simpr |
|- ( ( ( ph /\ a e. ( 0 ..^ S ) ) /\ b e. ( 1 ... N ) ) -> b e. ( 1 ... N ) ) |
23 |
21 22
|
sselid |
|- ( ( ( ph /\ a e. ( 0 ..^ S ) ) /\ b e. ( 1 ... N ) ) -> b e. ZZ ) |
24 |
23
|
zcnd |
|- ( ( ( ph /\ a e. ( 0 ..^ S ) ) /\ b e. ( 1 ... N ) ) -> b e. CC ) |
25 |
11
|
ad2antrr |
|- ( ( ( ph /\ a e. ( 0 ..^ S ) ) /\ b e. ( 1 ... N ) ) -> ( _i x. ( 2 x. _pi ) ) e. CC ) |
26 |
16
|
adantr |
|- ( ( ( ph /\ a e. ( 0 ..^ S ) ) /\ b e. ( 1 ... N ) ) -> X e. CC ) |
27 |
24 25 26
|
mul12d |
|- ( ( ( ph /\ a e. ( 0 ..^ S ) ) /\ b e. ( 1 ... N ) ) -> ( b x. ( ( _i x. ( 2 x. _pi ) ) x. X ) ) = ( ( _i x. ( 2 x. _pi ) ) x. ( b x. X ) ) ) |
28 |
27
|
fveq2d |
|- ( ( ( ph /\ a e. ( 0 ..^ S ) ) /\ b e. ( 1 ... N ) ) -> ( exp ` ( b x. ( ( _i x. ( 2 x. _pi ) ) x. X ) ) ) = ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( b x. X ) ) ) ) |
29 |
12
|
ad2antrr |
|- ( ( ( ph /\ a e. ( 0 ..^ S ) ) /\ b e. ( 1 ... N ) ) -> ( ( _i x. ( 2 x. _pi ) ) x. X ) e. CC ) |
30 |
|
efexp |
|- ( ( ( ( _i x. ( 2 x. _pi ) ) x. X ) e. CC /\ b e. ZZ ) -> ( exp ` ( b x. ( ( _i x. ( 2 x. _pi ) ) x. X ) ) ) = ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. X ) ) ^ b ) ) |
31 |
29 23 30
|
syl2anc |
|- ( ( ( ph /\ a e. ( 0 ..^ S ) ) /\ b e. ( 1 ... N ) ) -> ( exp ` ( b x. ( ( _i x. ( 2 x. _pi ) ) x. X ) ) ) = ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. X ) ) ^ b ) ) |
32 |
28 31
|
eqtr3d |
|- ( ( ( ph /\ a e. ( 0 ..^ S ) ) /\ b e. ( 1 ... N ) ) -> ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( b x. X ) ) ) = ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. X ) ) ^ b ) ) |
33 |
32
|
oveq2d |
|- ( ( ( ph /\ a e. ( 0 ..^ S ) ) /\ b e. ( 1 ... N ) ) -> ( ( ( L ` a ) ` b ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( b x. X ) ) ) ) = ( ( ( L ` a ) ` b ) x. ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. X ) ) ^ b ) ) ) |
34 |
33
|
sumeq2dv |
|- ( ( ph /\ a e. ( 0 ..^ S ) ) -> sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( b x. X ) ) ) ) = sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. X ) ) ^ b ) ) ) |
35 |
20 34
|
eqtrd |
|- ( ( ph /\ a e. ( 0 ..^ S ) ) -> ( ( ( L ` a ) vts N ) ` X ) = sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. X ) ) ^ b ) ) ) |
36 |
35
|
prodeq2dv |
|- ( ph -> prod_ a e. ( 0 ..^ S ) ( ( ( L ` a ) vts N ) ` X ) = prod_ a e. ( 0 ..^ S ) sum_ b e. ( 1 ... N ) ( ( ( L ` a ) ` b ) x. ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. X ) ) ^ b ) ) ) |
37 |
|
fzssz |
|- ( 0 ... ( S x. N ) ) C_ ZZ |
38 |
|
simpr |
|- ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) -> m e. ( 0 ... ( S x. N ) ) ) |
39 |
37 38
|
sselid |
|- ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) -> m e. ZZ ) |
40 |
39
|
adantr |
|- ( ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) /\ c e. ( ( 1 ... N ) ( repr ` S ) m ) ) -> m e. ZZ ) |
41 |
40
|
zcnd |
|- ( ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) /\ c e. ( ( 1 ... N ) ( repr ` S ) m ) ) -> m e. CC ) |
42 |
11
|
ad2antrr |
|- ( ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) /\ c e. ( ( 1 ... N ) ( repr ` S ) m ) ) -> ( _i x. ( 2 x. _pi ) ) e. CC ) |
43 |
2
|
ad2antrr |
|- ( ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) /\ c e. ( ( 1 ... N ) ( repr ` S ) m ) ) -> X e. CC ) |
44 |
41 42 43
|
mul12d |
|- ( ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) /\ c e. ( ( 1 ... N ) ( repr ` S ) m ) ) -> ( m x. ( ( _i x. ( 2 x. _pi ) ) x. X ) ) = ( ( _i x. ( 2 x. _pi ) ) x. ( m x. X ) ) ) |
45 |
44
|
fveq2d |
|- ( ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) /\ c e. ( ( 1 ... N ) ( repr ` S ) m ) ) -> ( exp ` ( m x. ( ( _i x. ( 2 x. _pi ) ) x. X ) ) ) = ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( m x. X ) ) ) ) |
46 |
12
|
ad2antrr |
|- ( ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) /\ c e. ( ( 1 ... N ) ( repr ` S ) m ) ) -> ( ( _i x. ( 2 x. _pi ) ) x. X ) e. CC ) |
47 |
|
efexp |
|- ( ( ( ( _i x. ( 2 x. _pi ) ) x. X ) e. CC /\ m e. ZZ ) -> ( exp ` ( m x. ( ( _i x. ( 2 x. _pi ) ) x. X ) ) ) = ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. X ) ) ^ m ) ) |
48 |
46 40 47
|
syl2anc |
|- ( ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) /\ c e. ( ( 1 ... N ) ( repr ` S ) m ) ) -> ( exp ` ( m x. ( ( _i x. ( 2 x. _pi ) ) x. X ) ) ) = ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. X ) ) ^ m ) ) |
49 |
45 48
|
eqtr3d |
|- ( ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) /\ c e. ( ( 1 ... N ) ( repr ` S ) m ) ) -> ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( m x. X ) ) ) = ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. X ) ) ^ m ) ) |
50 |
49
|
oveq2d |
|- ( ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) /\ c e. ( ( 1 ... N ) ( repr ` S ) m ) ) -> ( prod_ a e. ( 0 ..^ S ) ( ( L ` a ) ` ( c ` a ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( m x. X ) ) ) ) = ( prod_ a e. ( 0 ..^ S ) ( ( L ` a ) ` ( c ` a ) ) x. ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. X ) ) ^ m ) ) ) |
51 |
50
|
sumeq2dv |
|- ( ( ph /\ m e. ( 0 ... ( S x. N ) ) ) -> sum_ c e. ( ( 1 ... N ) ( repr ` S ) m ) ( prod_ a e. ( 0 ..^ S ) ( ( L ` a ) ` ( c ` a ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( m x. X ) ) ) ) = sum_ c e. ( ( 1 ... N ) ( repr ` S ) m ) ( prod_ a e. ( 0 ..^ S ) ( ( L ` a ) ` ( c ` a ) ) x. ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. X ) ) ^ m ) ) ) |
52 |
51
|
sumeq2dv |
|- ( ph -> sum_ m e. ( 0 ... ( S x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` S ) m ) ( prod_ a e. ( 0 ..^ S ) ( ( L ` a ) ` ( c ` a ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( m x. X ) ) ) ) = sum_ m e. ( 0 ... ( S x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` S ) m ) ( prod_ a e. ( 0 ..^ S ) ( ( L ` a ) ` ( c ` a ) ) x. ( ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. X ) ) ^ m ) ) ) |
53 |
14 36 52
|
3eqtr4d |
|- ( ph -> prod_ a e. ( 0 ..^ S ) ( ( ( L ` a ) vts N ) ` X ) = sum_ m e. ( 0 ... ( S x. N ) ) sum_ c e. ( ( 1 ... N ) ( repr ` S ) m ) ( prod_ a e. ( 0 ..^ S ) ( ( L ` a ) ` ( c ` a ) ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( m x. X ) ) ) ) ) |