Step |
Hyp |
Ref |
Expression |
1 |
|
vtsval.n |
|- ( ph -> N e. NN0 ) |
2 |
|
vtsval.x |
|- ( ph -> X e. CC ) |
3 |
|
vtsval.l |
|- ( ph -> L : NN --> CC ) |
4 |
|
cnex |
|- CC e. _V |
5 |
|
nnex |
|- NN e. _V |
6 |
4 5
|
elmap |
|- ( L e. ( CC ^m NN ) <-> L : NN --> CC ) |
7 |
3 6
|
sylibr |
|- ( ph -> L e. ( CC ^m NN ) ) |
8 |
|
fveq1 |
|- ( l = L -> ( l ` a ) = ( L ` a ) ) |
9 |
8
|
oveq1d |
|- ( l = L -> ( ( l ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) ) = ( ( L ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) ) ) |
10 |
9
|
sumeq2sdv |
|- ( l = L -> sum_ a e. ( 1 ... n ) ( ( l ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) ) = sum_ a e. ( 1 ... n ) ( ( L ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) ) ) |
11 |
10
|
mpteq2dv |
|- ( l = L -> ( x e. CC |-> sum_ a e. ( 1 ... n ) ( ( l ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) ) ) = ( x e. CC |-> sum_ a e. ( 1 ... n ) ( ( L ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) ) ) ) |
12 |
|
oveq2 |
|- ( n = N -> ( 1 ... n ) = ( 1 ... N ) ) |
13 |
12
|
sumeq1d |
|- ( n = N -> sum_ a e. ( 1 ... n ) ( ( L ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) ) = sum_ a e. ( 1 ... N ) ( ( L ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) ) ) |
14 |
13
|
mpteq2dv |
|- ( n = N -> ( x e. CC |-> sum_ a e. ( 1 ... n ) ( ( L ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) ) ) = ( x e. CC |-> sum_ a e. ( 1 ... N ) ( ( L ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) ) ) ) |
15 |
|
df-vts |
|- vts = ( l e. ( CC ^m NN ) , n e. NN0 |-> ( x e. CC |-> sum_ a e. ( 1 ... n ) ( ( l ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) ) ) ) |
16 |
4
|
mptex |
|- ( x e. CC |-> sum_ a e. ( 1 ... N ) ( ( L ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) ) ) e. _V |
17 |
11 14 15 16
|
ovmpo |
|- ( ( L e. ( CC ^m NN ) /\ N e. NN0 ) -> ( L vts N ) = ( x e. CC |-> sum_ a e. ( 1 ... N ) ( ( L ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) ) ) ) |
18 |
7 1 17
|
syl2anc |
|- ( ph -> ( L vts N ) = ( x e. CC |-> sum_ a e. ( 1 ... N ) ( ( L ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) ) ) ) |
19 |
|
oveq2 |
|- ( x = X -> ( a x. x ) = ( a x. X ) ) |
20 |
19
|
oveq2d |
|- ( x = X -> ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) = ( ( _i x. ( 2 x. _pi ) ) x. ( a x. X ) ) ) |
21 |
20
|
fveq2d |
|- ( x = X -> ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) = ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. X ) ) ) ) |
22 |
21
|
oveq2d |
|- ( x = X -> ( ( L ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) ) = ( ( L ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. X ) ) ) ) ) |
23 |
22
|
sumeq2sdv |
|- ( x = X -> sum_ a e. ( 1 ... N ) ( ( L ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) ) = sum_ a e. ( 1 ... N ) ( ( L ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. X ) ) ) ) ) |
24 |
23
|
adantl |
|- ( ( ph /\ x = X ) -> sum_ a e. ( 1 ... N ) ( ( L ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. x ) ) ) ) = sum_ a e. ( 1 ... N ) ( ( L ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. X ) ) ) ) ) |
25 |
|
sumex |
|- sum_ a e. ( 1 ... N ) ( ( L ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. X ) ) ) ) e. _V |
26 |
25
|
a1i |
|- ( ph -> sum_ a e. ( 1 ... N ) ( ( L ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. X ) ) ) ) e. _V ) |
27 |
18 24 2 26
|
fvmptd |
|- ( ph -> ( ( L vts N ) ` X ) = sum_ a e. ( 1 ... N ) ( ( L ` a ) x. ( exp ` ( ( _i x. ( 2 x. _pi ) ) x. ( a x. X ) ) ) ) ) |