| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vtxdgf.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | vtxdg0e.i |  |-  I = ( iEdg ` G ) | 
						
							| 3 | 2 | eqeq1i |  |-  ( I = (/) <-> ( iEdg ` G ) = (/) ) | 
						
							| 4 |  | dmeq |  |-  ( ( iEdg ` G ) = (/) -> dom ( iEdg ` G ) = dom (/) ) | 
						
							| 5 |  | dm0 |  |-  dom (/) = (/) | 
						
							| 6 | 4 5 | eqtrdi |  |-  ( ( iEdg ` G ) = (/) -> dom ( iEdg ` G ) = (/) ) | 
						
							| 7 |  | 0fi |  |-  (/) e. Fin | 
						
							| 8 | 6 7 | eqeltrdi |  |-  ( ( iEdg ` G ) = (/) -> dom ( iEdg ` G ) e. Fin ) | 
						
							| 9 | 3 8 | sylbi |  |-  ( I = (/) -> dom ( iEdg ` G ) e. Fin ) | 
						
							| 10 |  | simpl |  |-  ( ( U e. V /\ I = (/) ) -> U e. V ) | 
						
							| 11 |  | eqid |  |-  ( iEdg ` G ) = ( iEdg ` G ) | 
						
							| 12 |  | eqid |  |-  dom ( iEdg ` G ) = dom ( iEdg ` G ) | 
						
							| 13 | 1 11 12 | vtxdgfival |  |-  ( ( dom ( iEdg ` G ) e. Fin /\ U e. V ) -> ( ( VtxDeg ` G ) ` U ) = ( ( # ` { x e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` x ) } ) + ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { U } } ) ) ) | 
						
							| 14 | 9 10 13 | syl2an2 |  |-  ( ( U e. V /\ I = (/) ) -> ( ( VtxDeg ` G ) ` U ) = ( ( # ` { x e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` x ) } ) + ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { U } } ) ) ) | 
						
							| 15 | 3 6 | sylbi |  |-  ( I = (/) -> dom ( iEdg ` G ) = (/) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( U e. V /\ I = (/) ) -> dom ( iEdg ` G ) = (/) ) | 
						
							| 17 |  | rabeq |  |-  ( dom ( iEdg ` G ) = (/) -> { x e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` x ) } = { x e. (/) | U e. ( ( iEdg ` G ) ` x ) } ) | 
						
							| 18 |  | rab0 |  |-  { x e. (/) | U e. ( ( iEdg ` G ) ` x ) } = (/) | 
						
							| 19 | 17 18 | eqtrdi |  |-  ( dom ( iEdg ` G ) = (/) -> { x e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` x ) } = (/) ) | 
						
							| 20 | 19 | fveq2d |  |-  ( dom ( iEdg ` G ) = (/) -> ( # ` { x e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` x ) } ) = ( # ` (/) ) ) | 
						
							| 21 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 22 | 20 21 | eqtrdi |  |-  ( dom ( iEdg ` G ) = (/) -> ( # ` { x e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` x ) } ) = 0 ) | 
						
							| 23 |  | rabeq |  |-  ( dom ( iEdg ` G ) = (/) -> { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { U } } = { x e. (/) | ( ( iEdg ` G ) ` x ) = { U } } ) | 
						
							| 24 | 23 | fveq2d |  |-  ( dom ( iEdg ` G ) = (/) -> ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { U } } ) = ( # ` { x e. (/) | ( ( iEdg ` G ) ` x ) = { U } } ) ) | 
						
							| 25 |  | rab0 |  |-  { x e. (/) | ( ( iEdg ` G ) ` x ) = { U } } = (/) | 
						
							| 26 | 25 | fveq2i |  |-  ( # ` { x e. (/) | ( ( iEdg ` G ) ` x ) = { U } } ) = ( # ` (/) ) | 
						
							| 27 | 26 21 | eqtri |  |-  ( # ` { x e. (/) | ( ( iEdg ` G ) ` x ) = { U } } ) = 0 | 
						
							| 28 | 24 27 | eqtrdi |  |-  ( dom ( iEdg ` G ) = (/) -> ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { U } } ) = 0 ) | 
						
							| 29 | 22 28 | oveq12d |  |-  ( dom ( iEdg ` G ) = (/) -> ( ( # ` { x e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` x ) } ) + ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { U } } ) ) = ( 0 + 0 ) ) | 
						
							| 30 | 16 29 | syl |  |-  ( ( U e. V /\ I = (/) ) -> ( ( # ` { x e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` x ) } ) + ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { U } } ) ) = ( 0 + 0 ) ) | 
						
							| 31 |  | 00id |  |-  ( 0 + 0 ) = 0 | 
						
							| 32 | 30 31 | eqtrdi |  |-  ( ( U e. V /\ I = (/) ) -> ( ( # ` { x e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` x ) } ) + ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { U } } ) ) = 0 ) | 
						
							| 33 | 14 32 | eqtrd |  |-  ( ( U e. V /\ I = (/) ) -> ( ( VtxDeg ` G ) ` U ) = 0 ) |