| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vtxdgf.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 | 1 | eleq2i |  |-  ( U e. V <-> U e. ( Vtx ` G ) ) | 
						
							| 3 |  | fveq2 |  |-  ( G = (/) -> ( Vtx ` G ) = ( Vtx ` (/) ) ) | 
						
							| 4 |  | vtxval0 |  |-  ( Vtx ` (/) ) = (/) | 
						
							| 5 | 3 4 | eqtrdi |  |-  ( G = (/) -> ( Vtx ` G ) = (/) ) | 
						
							| 6 | 5 | eleq2d |  |-  ( G = (/) -> ( U e. ( Vtx ` G ) <-> U e. (/) ) ) | 
						
							| 7 | 2 6 | bitrid |  |-  ( G = (/) -> ( U e. V <-> U e. (/) ) ) | 
						
							| 8 |  | noel |  |-  -. U e. (/) | 
						
							| 9 | 8 | pm2.21i |  |-  ( U e. (/) -> ( ( VtxDeg ` G ) ` U ) = 0 ) | 
						
							| 10 | 7 9 | biimtrdi |  |-  ( G = (/) -> ( U e. V -> ( ( VtxDeg ` G ) ` U ) = 0 ) ) | 
						
							| 11 | 10 | imp |  |-  ( ( G = (/) /\ U e. V ) -> ( ( VtxDeg ` G ) ` U ) = 0 ) |