Metamath Proof Explorer


Theorem vtxdgelxnn0

Description: The degree of a vertex is either a nonnegative integer or positive infinity. (Contributed by Alexander van der Vekens, 30-Dec-2017) (Revised by AV, 10-Dec-2020) (Revised by AV, 22-Mar-2021)

Ref Expression
Hypothesis vtxdgf.v
|- V = ( Vtx ` G )
Assertion vtxdgelxnn0
|- ( X e. V -> ( ( VtxDeg ` G ) ` X ) e. NN0* )

Proof

Step Hyp Ref Expression
1 vtxdgf.v
 |-  V = ( Vtx ` G )
2 1 1vgrex
 |-  ( X e. V -> G e. _V )
3 1 vtxdgf
 |-  ( G e. _V -> ( VtxDeg ` G ) : V --> NN0* )
4 3 ffvelrnda
 |-  ( ( G e. _V /\ X e. V ) -> ( ( VtxDeg ` G ) ` X ) e. NN0* )
5 2 4 mpancom
 |-  ( X e. V -> ( ( VtxDeg ` G ) ` X ) e. NN0* )