| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vtxdgf.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | eqid |  |-  ( iEdg ` G ) = ( iEdg ` G ) | 
						
							| 3 |  | eqid |  |-  dom ( iEdg ` G ) = dom ( iEdg ` G ) | 
						
							| 4 | 1 2 3 | vtxdgfval |  |-  ( G e. W -> ( VtxDeg ` G ) = ( u e. V |-> ( ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) ) ) ) | 
						
							| 5 |  | eqid |  |-  { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } = { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } | 
						
							| 6 |  | fvex |  |-  ( iEdg ` G ) e. _V | 
						
							| 7 |  | dmexg |  |-  ( ( iEdg ` G ) e. _V -> dom ( iEdg ` G ) e. _V ) | 
						
							| 8 | 6 7 | mp1i |  |-  ( ( G e. W /\ u e. V ) -> dom ( iEdg ` G ) e. _V ) | 
						
							| 9 | 5 8 | rabexd |  |-  ( ( G e. W /\ u e. V ) -> { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } e. _V ) | 
						
							| 10 |  | hashxnn0 |  |-  ( { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } e. _V -> ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) e. NN0* ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( G e. W /\ u e. V ) -> ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) e. NN0* ) | 
						
							| 12 |  | eqid |  |-  { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } = { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } | 
						
							| 13 | 12 8 | rabexd |  |-  ( ( G e. W /\ u e. V ) -> { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } e. _V ) | 
						
							| 14 |  | hashxnn0 |  |-  ( { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } e. _V -> ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) e. NN0* ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( G e. W /\ u e. V ) -> ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) e. NN0* ) | 
						
							| 16 |  | xnn0xaddcl |  |-  ( ( ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) e. NN0* /\ ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) e. NN0* ) -> ( ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) ) e. NN0* ) | 
						
							| 17 | 11 15 16 | syl2anc |  |-  ( ( G e. W /\ u e. V ) -> ( ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) ) e. NN0* ) | 
						
							| 18 | 4 17 | fmpt3d |  |-  ( G e. W -> ( VtxDeg ` G ) : V --> NN0* ) |