| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vtxdgfusgrf.v |
|- V = ( Vtx ` G ) |
| 2 |
|
fusgrfis |
|- ( G e. FinUSGraph -> ( Edg ` G ) e. Fin ) |
| 3 |
|
fusgrusgr |
|- ( G e. FinUSGraph -> G e. USGraph ) |
| 4 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 5 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
| 6 |
4 5
|
usgredgffibi |
|- ( G e. USGraph -> ( ( Edg ` G ) e. Fin <-> ( iEdg ` G ) e. Fin ) ) |
| 7 |
3 6
|
syl |
|- ( G e. FinUSGraph -> ( ( Edg ` G ) e. Fin <-> ( iEdg ` G ) e. Fin ) ) |
| 8 |
|
usgrfun |
|- ( G e. USGraph -> Fun ( iEdg ` G ) ) |
| 9 |
|
fundmfibi |
|- ( Fun ( iEdg ` G ) -> ( ( iEdg ` G ) e. Fin <-> dom ( iEdg ` G ) e. Fin ) ) |
| 10 |
3 8 9
|
3syl |
|- ( G e. FinUSGraph -> ( ( iEdg ` G ) e. Fin <-> dom ( iEdg ` G ) e. Fin ) ) |
| 11 |
7 10
|
bitrd |
|- ( G e. FinUSGraph -> ( ( Edg ` G ) e. Fin <-> dom ( iEdg ` G ) e. Fin ) ) |
| 12 |
2 11
|
mpbid |
|- ( G e. FinUSGraph -> dom ( iEdg ` G ) e. Fin ) |
| 13 |
|
eqid |
|- dom ( iEdg ` G ) = dom ( iEdg ` G ) |
| 14 |
1 4 13
|
vtxdgfisf |
|- ( ( G e. FinUSGraph /\ dom ( iEdg ` G ) e. Fin ) -> ( VtxDeg ` G ) : V --> NN0 ) |
| 15 |
12 14
|
mpdan |
|- ( G e. FinUSGraph -> ( VtxDeg ` G ) : V --> NN0 ) |