| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vtxdgfval.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | vtxdgfval.i |  |-  I = ( iEdg ` G ) | 
						
							| 3 |  | vtxdgfval.a |  |-  A = dom I | 
						
							| 4 |  | df-vtxdg |  |-  VtxDeg = ( g e. _V |-> [_ ( Vtx ` g ) / v ]_ [_ ( iEdg ` g ) / e ]_ ( u e. v |-> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) ) ) | 
						
							| 5 |  | fvex |  |-  ( Vtx ` g ) e. _V | 
						
							| 6 |  | fvex |  |-  ( iEdg ` g ) e. _V | 
						
							| 7 |  | simpl |  |-  ( ( v = ( Vtx ` g ) /\ e = ( iEdg ` g ) ) -> v = ( Vtx ` g ) ) | 
						
							| 8 |  | dmeq |  |-  ( e = ( iEdg ` g ) -> dom e = dom ( iEdg ` g ) ) | 
						
							| 9 |  | fveq1 |  |-  ( e = ( iEdg ` g ) -> ( e ` x ) = ( ( iEdg ` g ) ` x ) ) | 
						
							| 10 | 9 | eleq2d |  |-  ( e = ( iEdg ` g ) -> ( u e. ( e ` x ) <-> u e. ( ( iEdg ` g ) ` x ) ) ) | 
						
							| 11 | 8 10 | rabeqbidv |  |-  ( e = ( iEdg ` g ) -> { x e. dom e | u e. ( e ` x ) } = { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) | 
						
							| 12 | 11 | fveq2d |  |-  ( e = ( iEdg ` g ) -> ( # ` { x e. dom e | u e. ( e ` x ) } ) = ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) ) | 
						
							| 13 | 9 | eqeq1d |  |-  ( e = ( iEdg ` g ) -> ( ( e ` x ) = { u } <-> ( ( iEdg ` g ) ` x ) = { u } ) ) | 
						
							| 14 | 8 13 | rabeqbidv |  |-  ( e = ( iEdg ` g ) -> { x e. dom e | ( e ` x ) = { u } } = { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) | 
						
							| 15 | 14 | fveq2d |  |-  ( e = ( iEdg ` g ) -> ( # ` { x e. dom e | ( e ` x ) = { u } } ) = ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) | 
						
							| 16 | 12 15 | oveq12d |  |-  ( e = ( iEdg ` g ) -> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) = ( ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( v = ( Vtx ` g ) /\ e = ( iEdg ` g ) ) -> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) = ( ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) ) | 
						
							| 18 | 7 17 | mpteq12dv |  |-  ( ( v = ( Vtx ` g ) /\ e = ( iEdg ` g ) ) -> ( u e. v |-> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) ) = ( u e. ( Vtx ` g ) |-> ( ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) ) ) | 
						
							| 19 | 5 6 18 | csbie2 |  |-  [_ ( Vtx ` g ) / v ]_ [_ ( iEdg ` g ) / e ]_ ( u e. v |-> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) ) = ( u e. ( Vtx ` g ) |-> ( ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) ) | 
						
							| 20 |  | fveq2 |  |-  ( g = G -> ( Vtx ` g ) = ( Vtx ` G ) ) | 
						
							| 21 | 20 1 | eqtr4di |  |-  ( g = G -> ( Vtx ` g ) = V ) | 
						
							| 22 |  | fveq2 |  |-  ( g = G -> ( iEdg ` g ) = ( iEdg ` G ) ) | 
						
							| 23 | 22 | dmeqd |  |-  ( g = G -> dom ( iEdg ` g ) = dom ( iEdg ` G ) ) | 
						
							| 24 | 2 | dmeqi |  |-  dom I = dom ( iEdg ` G ) | 
						
							| 25 | 3 24 | eqtri |  |-  A = dom ( iEdg ` G ) | 
						
							| 26 | 23 25 | eqtr4di |  |-  ( g = G -> dom ( iEdg ` g ) = A ) | 
						
							| 27 | 22 2 | eqtr4di |  |-  ( g = G -> ( iEdg ` g ) = I ) | 
						
							| 28 | 27 | fveq1d |  |-  ( g = G -> ( ( iEdg ` g ) ` x ) = ( I ` x ) ) | 
						
							| 29 | 28 | eleq2d |  |-  ( g = G -> ( u e. ( ( iEdg ` g ) ` x ) <-> u e. ( I ` x ) ) ) | 
						
							| 30 | 26 29 | rabeqbidv |  |-  ( g = G -> { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } = { x e. A | u e. ( I ` x ) } ) | 
						
							| 31 | 30 | fveq2d |  |-  ( g = G -> ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) = ( # ` { x e. A | u e. ( I ` x ) } ) ) | 
						
							| 32 | 28 | eqeq1d |  |-  ( g = G -> ( ( ( iEdg ` g ) ` x ) = { u } <-> ( I ` x ) = { u } ) ) | 
						
							| 33 | 26 32 | rabeqbidv |  |-  ( g = G -> { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } = { x e. A | ( I ` x ) = { u } } ) | 
						
							| 34 | 33 | fveq2d |  |-  ( g = G -> ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) = ( # ` { x e. A | ( I ` x ) = { u } } ) ) | 
						
							| 35 | 31 34 | oveq12d |  |-  ( g = G -> ( ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) = ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) | 
						
							| 36 | 21 35 | mpteq12dv |  |-  ( g = G -> ( u e. ( Vtx ` g ) |-> ( ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) ) = ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) ) | 
						
							| 37 | 36 | adantl |  |-  ( ( G e. W /\ g = G ) -> ( u e. ( Vtx ` g ) |-> ( ( # ` { x e. dom ( iEdg ` g ) | u e. ( ( iEdg ` g ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` g ) | ( ( iEdg ` g ) ` x ) = { u } } ) ) ) = ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) ) | 
						
							| 38 | 19 37 | eqtrid |  |-  ( ( G e. W /\ g = G ) -> [_ ( Vtx ` g ) / v ]_ [_ ( iEdg ` g ) / e ]_ ( u e. v |-> ( ( # ` { x e. dom e | u e. ( e ` x ) } ) +e ( # ` { x e. dom e | ( e ` x ) = { u } } ) ) ) = ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) ) | 
						
							| 39 |  | elex |  |-  ( G e. W -> G e. _V ) | 
						
							| 40 | 1 | fvexi |  |-  V e. _V | 
						
							| 41 |  | mptexg |  |-  ( V e. _V -> ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) e. _V ) | 
						
							| 42 | 40 41 | mp1i |  |-  ( G e. W -> ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) e. _V ) | 
						
							| 43 | 4 38 39 42 | fvmptd2 |  |-  ( G e. W -> ( VtxDeg ` G ) = ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) ) |