Metamath Proof Explorer


Theorem vtxdginducedm1lem2

Description: Lemma 2 for vtxdginducedm1 : the domain of the edge function in the induced subgraph S of a pseudograph G obtained by removing one vertex N . (Contributed by AV, 16-Dec-2021)

Ref Expression
Hypotheses vtxdginducedm1.v
|- V = ( Vtx ` G )
vtxdginducedm1.e
|- E = ( iEdg ` G )
vtxdginducedm1.k
|- K = ( V \ { N } )
vtxdginducedm1.i
|- I = { i e. dom E | N e/ ( E ` i ) }
vtxdginducedm1.p
|- P = ( E |` I )
vtxdginducedm1.s
|- S = <. K , P >.
Assertion vtxdginducedm1lem2
|- dom ( iEdg ` S ) = I

Proof

Step Hyp Ref Expression
1 vtxdginducedm1.v
 |-  V = ( Vtx ` G )
2 vtxdginducedm1.e
 |-  E = ( iEdg ` G )
3 vtxdginducedm1.k
 |-  K = ( V \ { N } )
4 vtxdginducedm1.i
 |-  I = { i e. dom E | N e/ ( E ` i ) }
5 vtxdginducedm1.p
 |-  P = ( E |` I )
6 vtxdginducedm1.s
 |-  S = <. K , P >.
7 1 2 3 4 5 6 vtxdginducedm1lem1
 |-  ( iEdg ` S ) = P
8 7 5 eqtri
 |-  ( iEdg ` S ) = ( E |` I )
9 8 dmeqi
 |-  dom ( iEdg ` S ) = dom ( E |` I )
10 4 ssrab3
 |-  I C_ dom E
11 ssdmres
 |-  ( I C_ dom E <-> dom ( E |` I ) = I )
12 10 11 mpbi
 |-  dom ( E |` I ) = I
13 9 12 eqtri
 |-  dom ( iEdg ` S ) = I