| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opex |
|- <. ( Vtx ` G ) , ( iEdg ` G ) >. e. _V |
| 2 |
|
fvex |
|- ( Vtx ` G ) e. _V |
| 3 |
|
fvex |
|- ( iEdg ` G ) e. _V |
| 4 |
2 3
|
opvtxfvi |
|- ( Vtx ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) = ( Vtx ` G ) |
| 5 |
4
|
eqcomi |
|- ( Vtx ` G ) = ( Vtx ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) |
| 6 |
2 3
|
opiedgfvi |
|- ( iEdg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) = ( iEdg ` G ) |
| 7 |
6
|
eqcomi |
|- ( iEdg ` G ) = ( iEdg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) |
| 8 |
|
eqid |
|- dom ( iEdg ` G ) = dom ( iEdg ` G ) |
| 9 |
5 7 8
|
vtxdgfval |
|- ( <. ( Vtx ` G ) , ( iEdg ` G ) >. e. _V -> ( VtxDeg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) = ( u e. ( Vtx ` G ) |-> ( ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) ) ) ) |
| 10 |
1 9
|
mp1i |
|- ( G e. W -> ( VtxDeg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) = ( u e. ( Vtx ` G ) |-> ( ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) ) ) ) |
| 11 |
|
df-ov |
|- ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) = ( VtxDeg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) |
| 12 |
11
|
a1i |
|- ( G e. W -> ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) = ( VtxDeg ` <. ( Vtx ` G ) , ( iEdg ` G ) >. ) ) |
| 13 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 14 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 15 |
13 14 8
|
vtxdgfval |
|- ( G e. W -> ( VtxDeg ` G ) = ( u e. ( Vtx ` G ) |-> ( ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) ) ) ) |
| 16 |
10 12 15
|
3eqtr4rd |
|- ( G e. W -> ( VtxDeg ` G ) = ( ( Vtx ` G ) VtxDeg ( iEdg ` G ) ) ) |