Step |
Hyp |
Ref |
Expression |
1 |
|
vtxdgval.v |
|- V = ( Vtx ` G ) |
2 |
|
vtxdgval.i |
|- I = ( iEdg ` G ) |
3 |
|
vtxdgval.a |
|- A = dom I |
4 |
1
|
1vgrex |
|- ( U e. V -> G e. _V ) |
5 |
1 2 3
|
vtxdgfval |
|- ( G e. _V -> ( VtxDeg ` G ) = ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) ) |
6 |
4 5
|
syl |
|- ( U e. V -> ( VtxDeg ` G ) = ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) ) |
7 |
6
|
fveq1d |
|- ( U e. V -> ( ( VtxDeg ` G ) ` U ) = ( ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) ` U ) ) |
8 |
|
eleq1 |
|- ( u = U -> ( u e. ( I ` x ) <-> U e. ( I ` x ) ) ) |
9 |
8
|
rabbidv |
|- ( u = U -> { x e. A | u e. ( I ` x ) } = { x e. A | U e. ( I ` x ) } ) |
10 |
9
|
fveq2d |
|- ( u = U -> ( # ` { x e. A | u e. ( I ` x ) } ) = ( # ` { x e. A | U e. ( I ` x ) } ) ) |
11 |
|
sneq |
|- ( u = U -> { u } = { U } ) |
12 |
11
|
eqeq2d |
|- ( u = U -> ( ( I ` x ) = { u } <-> ( I ` x ) = { U } ) ) |
13 |
12
|
rabbidv |
|- ( u = U -> { x e. A | ( I ` x ) = { u } } = { x e. A | ( I ` x ) = { U } } ) |
14 |
13
|
fveq2d |
|- ( u = U -> ( # ` { x e. A | ( I ` x ) = { u } } ) = ( # ` { x e. A | ( I ` x ) = { U } } ) ) |
15 |
10 14
|
oveq12d |
|- ( u = U -> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) = ( ( # ` { x e. A | U e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { U } } ) ) ) |
16 |
|
eqid |
|- ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) = ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) |
17 |
|
ovex |
|- ( ( # ` { x e. A | U e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { U } } ) ) e. _V |
18 |
15 16 17
|
fvmpt |
|- ( U e. V -> ( ( u e. V |-> ( ( # ` { x e. A | u e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { u } } ) ) ) ` U ) = ( ( # ` { x e. A | U e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { U } } ) ) ) |
19 |
7 18
|
eqtrd |
|- ( U e. V -> ( ( VtxDeg ` G ) ` U ) = ( ( # ` { x e. A | U e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { U } } ) ) ) |