Step |
Hyp |
Ref |
Expression |
1 |
|
vtxdlfgrval.v |
|- V = ( Vtx ` G ) |
2 |
|
vtxdlfgrval.i |
|- I = ( iEdg ` G ) |
3 |
|
vtxdlfgrval.a |
|- A = dom I |
4 |
|
vtxdlfgrval.d |
|- D = ( VtxDeg ` G ) |
5 |
4
|
fveq1i |
|- ( D ` U ) = ( ( VtxDeg ` G ) ` U ) |
6 |
1 2 3
|
vtxdgval |
|- ( U e. V -> ( ( VtxDeg ` G ) ` U ) = ( ( # ` { x e. A | U e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { U } } ) ) ) |
7 |
6
|
adantl |
|- ( ( I : A --> { x e. ~P V | 2 <_ ( # ` x ) } /\ U e. V ) -> ( ( VtxDeg ` G ) ` U ) = ( ( # ` { x e. A | U e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { U } } ) ) ) |
8 |
5 7
|
eqtrid |
|- ( ( I : A --> { x e. ~P V | 2 <_ ( # ` x ) } /\ U e. V ) -> ( D ` U ) = ( ( # ` { x e. A | U e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { U } } ) ) ) |
9 |
|
eqid |
|- { x e. ~P V | 2 <_ ( # ` x ) } = { x e. ~P V | 2 <_ ( # ` x ) } |
10 |
2 3 9
|
lfgrnloop |
|- ( I : A --> { x e. ~P V | 2 <_ ( # ` x ) } -> { x e. A | ( I ` x ) = { U } } = (/) ) |
11 |
10
|
adantr |
|- ( ( I : A --> { x e. ~P V | 2 <_ ( # ` x ) } /\ U e. V ) -> { x e. A | ( I ` x ) = { U } } = (/) ) |
12 |
11
|
fveq2d |
|- ( ( I : A --> { x e. ~P V | 2 <_ ( # ` x ) } /\ U e. V ) -> ( # ` { x e. A | ( I ` x ) = { U } } ) = ( # ` (/) ) ) |
13 |
|
hash0 |
|- ( # ` (/) ) = 0 |
14 |
12 13
|
eqtrdi |
|- ( ( I : A --> { x e. ~P V | 2 <_ ( # ` x ) } /\ U e. V ) -> ( # ` { x e. A | ( I ` x ) = { U } } ) = 0 ) |
15 |
14
|
oveq2d |
|- ( ( I : A --> { x e. ~P V | 2 <_ ( # ` x ) } /\ U e. V ) -> ( ( # ` { x e. A | U e. ( I ` x ) } ) +e ( # ` { x e. A | ( I ` x ) = { U } } ) ) = ( ( # ` { x e. A | U e. ( I ` x ) } ) +e 0 ) ) |
16 |
2
|
dmeqi |
|- dom I = dom ( iEdg ` G ) |
17 |
3 16
|
eqtri |
|- A = dom ( iEdg ` G ) |
18 |
|
fvex |
|- ( iEdg ` G ) e. _V |
19 |
18
|
dmex |
|- dom ( iEdg ` G ) e. _V |
20 |
17 19
|
eqeltri |
|- A e. _V |
21 |
20
|
rabex |
|- { x e. A | U e. ( I ` x ) } e. _V |
22 |
|
hashxnn0 |
|- ( { x e. A | U e. ( I ` x ) } e. _V -> ( # ` { x e. A | U e. ( I ` x ) } ) e. NN0* ) |
23 |
|
xnn0xr |
|- ( ( # ` { x e. A | U e. ( I ` x ) } ) e. NN0* -> ( # ` { x e. A | U e. ( I ` x ) } ) e. RR* ) |
24 |
21 22 23
|
mp2b |
|- ( # ` { x e. A | U e. ( I ` x ) } ) e. RR* |
25 |
|
xaddid1 |
|- ( ( # ` { x e. A | U e. ( I ` x ) } ) e. RR* -> ( ( # ` { x e. A | U e. ( I ` x ) } ) +e 0 ) = ( # ` { x e. A | U e. ( I ` x ) } ) ) |
26 |
24 25
|
mp1i |
|- ( ( I : A --> { x e. ~P V | 2 <_ ( # ` x ) } /\ U e. V ) -> ( ( # ` { x e. A | U e. ( I ` x ) } ) +e 0 ) = ( # ` { x e. A | U e. ( I ` x ) } ) ) |
27 |
8 15 26
|
3eqtrd |
|- ( ( I : A --> { x e. ~P V | 2 <_ ( # ` x ) } /\ U e. V ) -> ( D ` U ) = ( # ` { x e. A | U e. ( I ` x ) } ) ) |