Metamath Proof Explorer


Theorem vtxdlfuhgr1v

Description: The degree of the vertex in a loop-free hypergraph with one vertex is 0. (Contributed by AV, 2-Apr-2021)

Ref Expression
Hypotheses vtxdlfuhgr1v.v
|- V = ( Vtx ` G )
vtxdlfuhgr1v.i
|- I = ( iEdg ` G )
vtxdlfuhgr1v.e
|- E = { x e. ~P V | 2 <_ ( # ` x ) }
Assertion vtxdlfuhgr1v
|- ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) -> ( U e. V -> ( ( VtxDeg ` G ) ` U ) = 0 ) )

Proof

Step Hyp Ref Expression
1 vtxdlfuhgr1v.v
 |-  V = ( Vtx ` G )
2 vtxdlfuhgr1v.i
 |-  I = ( iEdg ` G )
3 vtxdlfuhgr1v.e
 |-  E = { x e. ~P V | 2 <_ ( # ` x ) }
4 simpl1
 |-  ( ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) /\ U e. V ) -> G e. UHGraph )
5 simpr
 |-  ( ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) /\ U e. V ) -> U e. V )
6 1 2 3 lfuhgr1v0e
 |-  ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) -> ( Edg ` G ) = (/) )
7 6 adantr
 |-  ( ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) /\ U e. V ) -> ( Edg ` G ) = (/) )
8 eqid
 |-  ( Edg ` G ) = ( Edg ` G )
9 1 8 vtxduhgr0e
 |-  ( ( G e. UHGraph /\ U e. V /\ ( Edg ` G ) = (/) ) -> ( ( VtxDeg ` G ) ` U ) = 0 )
10 4 5 7 9 syl3anc
 |-  ( ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) /\ U e. V ) -> ( ( VtxDeg ` G ) ` U ) = 0 )
11 10 ex
 |-  ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) -> ( U e. V -> ( ( VtxDeg ` G ) ` U ) = 0 ) )