| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vtxdlfuhgr1v.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | vtxdlfuhgr1v.i |  |-  I = ( iEdg ` G ) | 
						
							| 3 |  | vtxdlfuhgr1v.e |  |-  E = { x e. ~P V | 2 <_ ( # ` x ) } | 
						
							| 4 |  | simpl1 |  |-  ( ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) /\ U e. V ) -> G e. UHGraph ) | 
						
							| 5 |  | simpr |  |-  ( ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) /\ U e. V ) -> U e. V ) | 
						
							| 6 | 1 2 3 | lfuhgr1v0e |  |-  ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) -> ( Edg ` G ) = (/) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) /\ U e. V ) -> ( Edg ` G ) = (/) ) | 
						
							| 8 |  | eqid |  |-  ( Edg ` G ) = ( Edg ` G ) | 
						
							| 9 | 1 8 | vtxduhgr0e |  |-  ( ( G e. UHGraph /\ U e. V /\ ( Edg ` G ) = (/) ) -> ( ( VtxDeg ` G ) ` U ) = 0 ) | 
						
							| 10 | 4 5 7 9 | syl3anc |  |-  ( ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) /\ U e. V ) -> ( ( VtxDeg ` G ) ` U ) = 0 ) | 
						
							| 11 | 10 | ex |  |-  ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) -> ( U e. V -> ( ( VtxDeg ` G ) ` U ) = 0 ) ) |