| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vtxdushgrfvedg.v |
|- V = ( Vtx ` G ) |
| 2 |
|
vtxdushgrfvedg.e |
|- E = ( Edg ` G ) |
| 3 |
|
vtxdushgrfvedg.d |
|- D = ( VtxDeg ` G ) |
| 4 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 5 |
1 4 3
|
vtxd0nedgb |
|- ( U e. V -> ( ( D ` U ) = 0 <-> -. E. i e. dom ( iEdg ` G ) U e. ( ( iEdg ` G ) ` i ) ) ) |
| 6 |
5
|
adantl |
|- ( ( G e. UHGraph /\ U e. V ) -> ( ( D ` U ) = 0 <-> -. E. i e. dom ( iEdg ` G ) U e. ( ( iEdg ` G ) ` i ) ) ) |
| 7 |
4 2
|
uhgrvtxedgiedgb |
|- ( ( G e. UHGraph /\ U e. V ) -> ( E. i e. dom ( iEdg ` G ) U e. ( ( iEdg ` G ) ` i ) <-> E. e e. E U e. e ) ) |
| 8 |
7
|
notbid |
|- ( ( G e. UHGraph /\ U e. V ) -> ( -. E. i e. dom ( iEdg ` G ) U e. ( ( iEdg ` G ) ` i ) <-> -. E. e e. E U e. e ) ) |
| 9 |
6 8
|
bitrd |
|- ( ( G e. UHGraph /\ U e. V ) -> ( ( D ` U ) = 0 <-> -. E. e e. E U e. e ) ) |