Metamath Proof Explorer


Theorem vtxduhgrun

Description: The degree of a vertex in the union of two hypergraphs on the same vertex set is the sum of the degrees of the vertex in each hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 21-Dec-2017) (Revised by AV, 12-Dec-2020) (Proof shortened by AV, 19-Feb-2021)

Ref Expression
Hypotheses vtxduhgrun.i
|- I = ( iEdg ` G )
vtxduhgrun.j
|- J = ( iEdg ` H )
vtxduhgrun.vg
|- V = ( Vtx ` G )
vtxduhgrun.vh
|- ( ph -> ( Vtx ` H ) = V )
vtxduhgrun.vu
|- ( ph -> ( Vtx ` U ) = V )
vtxduhgrun.d
|- ( ph -> ( dom I i^i dom J ) = (/) )
vtxduhgrun.g
|- ( ph -> G e. UHGraph )
vtxduhgrun.h
|- ( ph -> H e. UHGraph )
vtxduhgrun.n
|- ( ph -> N e. V )
vtxduhgrun.u
|- ( ph -> ( iEdg ` U ) = ( I u. J ) )
Assertion vtxduhgrun
|- ( ph -> ( ( VtxDeg ` U ) ` N ) = ( ( ( VtxDeg ` G ) ` N ) +e ( ( VtxDeg ` H ) ` N ) ) )

Proof

Step Hyp Ref Expression
1 vtxduhgrun.i
 |-  I = ( iEdg ` G )
2 vtxduhgrun.j
 |-  J = ( iEdg ` H )
3 vtxduhgrun.vg
 |-  V = ( Vtx ` G )
4 vtxduhgrun.vh
 |-  ( ph -> ( Vtx ` H ) = V )
5 vtxduhgrun.vu
 |-  ( ph -> ( Vtx ` U ) = V )
6 vtxduhgrun.d
 |-  ( ph -> ( dom I i^i dom J ) = (/) )
7 vtxduhgrun.g
 |-  ( ph -> G e. UHGraph )
8 vtxduhgrun.h
 |-  ( ph -> H e. UHGraph )
9 vtxduhgrun.n
 |-  ( ph -> N e. V )
10 vtxduhgrun.u
 |-  ( ph -> ( iEdg ` U ) = ( I u. J ) )
11 1 uhgrfun
 |-  ( G e. UHGraph -> Fun I )
12 7 11 syl
 |-  ( ph -> Fun I )
13 2 uhgrfun
 |-  ( H e. UHGraph -> Fun J )
14 8 13 syl
 |-  ( ph -> Fun J )
15 1 2 3 4 5 6 12 14 9 10 vtxdun
 |-  ( ph -> ( ( VtxDeg ` U ) ` N ) = ( ( ( VtxDeg ` G ) ` N ) +e ( ( VtxDeg ` H ) ` N ) ) )