Step |
Hyp |
Ref |
Expression |
1 |
|
vtxdlfgrval.v |
|- V = ( Vtx ` G ) |
2 |
|
vtxdlfgrval.i |
|- I = ( iEdg ` G ) |
3 |
|
vtxdlfgrval.a |
|- A = dom I |
4 |
|
vtxdlfgrval.d |
|- D = ( VtxDeg ` G ) |
5 |
1 2
|
umgrislfupgr |
|- ( G e. UMGraph <-> ( G e. UPGraph /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) ) |
6 |
3
|
eqcomi |
|- dom I = A |
7 |
6
|
feq2i |
|- ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } <-> I : A --> { x e. ~P V | 2 <_ ( # ` x ) } ) |
8 |
7
|
biimpi |
|- ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> I : A --> { x e. ~P V | 2 <_ ( # ` x ) } ) |
9 |
5 8
|
simplbiim |
|- ( G e. UMGraph -> I : A --> { x e. ~P V | 2 <_ ( # ` x ) } ) |
10 |
1 2 3 4
|
vtxdlfgrval |
|- ( ( I : A --> { x e. ~P V | 2 <_ ( # ` x ) } /\ U e. V ) -> ( D ` U ) = ( # ` { x e. A | U e. ( I ` x ) } ) ) |
11 |
9 10
|
sylan |
|- ( ( G e. UMGraph /\ U e. V ) -> ( D ` U ) = ( # ` { x e. A | U e. ( I ` x ) } ) ) |