Description: A vertex in a simple graph has degree 0 iff there is no edge incident with this vertex. (Contributed by AV, 17-Dec-2020) (Proof shortened by AV, 24-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | vtxdushgrfvedg.v | |- V = ( Vtx ` G ) |
|
vtxdushgrfvedg.e | |- E = ( Edg ` G ) |
||
vtxdushgrfvedg.d | |- D = ( VtxDeg ` G ) |
||
Assertion | vtxdusgr0edgnel | |- ( ( G e. USGraph /\ U e. V ) -> ( ( D ` U ) = 0 <-> -. E. e e. E U e. e ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdushgrfvedg.v | |- V = ( Vtx ` G ) |
|
2 | vtxdushgrfvedg.e | |- E = ( Edg ` G ) |
|
3 | vtxdushgrfvedg.d | |- D = ( VtxDeg ` G ) |
|
4 | usgruhgr | |- ( G e. USGraph -> G e. UHGraph ) |
|
5 | 1 2 3 | vtxduhgr0edgnel | |- ( ( G e. UHGraph /\ U e. V ) -> ( ( D ` U ) = 0 <-> -. E. e e. E U e. e ) ) |
6 | 4 5 | sylan | |- ( ( G e. USGraph /\ U e. V ) -> ( ( D ` U ) = 0 <-> -. E. e e. E U e. e ) ) |