Metamath Proof Explorer


Theorem vtxdusgr0edgnel

Description: A vertex in a simple graph has degree 0 iff there is no edge incident with this vertex. (Contributed by AV, 17-Dec-2020) (Proof shortened by AV, 24-Dec-2020)

Ref Expression
Hypotheses vtxdushgrfvedg.v
|- V = ( Vtx ` G )
vtxdushgrfvedg.e
|- E = ( Edg ` G )
vtxdushgrfvedg.d
|- D = ( VtxDeg ` G )
Assertion vtxdusgr0edgnel
|- ( ( G e. USGraph /\ U e. V ) -> ( ( D ` U ) = 0 <-> -. E. e e. E U e. e ) )

Proof

Step Hyp Ref Expression
1 vtxdushgrfvedg.v
 |-  V = ( Vtx ` G )
2 vtxdushgrfvedg.e
 |-  E = ( Edg ` G )
3 vtxdushgrfvedg.d
 |-  D = ( VtxDeg ` G )
4 usgruhgr
 |-  ( G e. USGraph -> G e. UHGraph )
5 1 2 3 vtxduhgr0edgnel
 |-  ( ( G e. UHGraph /\ U e. V ) -> ( ( D ` U ) = 0 <-> -. E. e e. E U e. e ) )
6 4 5 sylan
 |-  ( ( G e. USGraph /\ U e. V ) -> ( ( D ` U ) = 0 <-> -. E. e e. E U e. e ) )