| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vtxdushgrfvedg.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | vtxdushgrfvedg.e |  |-  E = ( Edg ` G ) | 
						
							| 3 |  | vtxdushgrfvedg.d |  |-  D = ( VtxDeg ` G ) | 
						
							| 4 | 3 | fveq1i |  |-  ( D ` U ) = ( ( VtxDeg ` G ) ` U ) | 
						
							| 5 | 4 | a1i |  |-  ( ( G e. USHGraph /\ U e. V ) -> ( D ` U ) = ( ( VtxDeg ` G ) ` U ) ) | 
						
							| 6 |  | eqid |  |-  ( iEdg ` G ) = ( iEdg ` G ) | 
						
							| 7 |  | eqid |  |-  dom ( iEdg ` G ) = dom ( iEdg ` G ) | 
						
							| 8 | 1 6 7 | vtxdgval |  |-  ( U e. V -> ( ( VtxDeg ` G ) ` U ) = ( ( # ` { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } ) +e ( # ` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } ) ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( G e. USHGraph /\ U e. V ) -> ( ( VtxDeg ` G ) ` U ) = ( ( # ` { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } ) +e ( # ` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } ) ) ) | 
						
							| 10 | 1 2 | vtxdushgrfvedglem |  |-  ( ( G e. USHGraph /\ U e. V ) -> ( # ` { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } ) = ( # ` { e e. E | U e. e } ) ) | 
						
							| 11 |  | fvex |  |-  ( iEdg ` G ) e. _V | 
						
							| 12 | 11 | dmex |  |-  dom ( iEdg ` G ) e. _V | 
						
							| 13 | 12 | rabex |  |-  { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } e. _V | 
						
							| 14 | 13 | a1i |  |-  ( ( G e. USHGraph /\ U e. V ) -> { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } e. _V ) | 
						
							| 15 |  | eqid |  |-  { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } = { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } | 
						
							| 16 |  | eqeq1 |  |-  ( e = c -> ( e = { U } <-> c = { U } ) ) | 
						
							| 17 | 16 | cbvrabv |  |-  { e e. E | e = { U } } = { c e. E | c = { U } } | 
						
							| 18 |  | eqid |  |-  ( x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } |-> ( ( iEdg ` G ) ` x ) ) = ( x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } |-> ( ( iEdg ` G ) ` x ) ) | 
						
							| 19 | 2 6 15 17 18 | ushgredgedgloop |  |-  ( ( G e. USHGraph /\ U e. V ) -> ( x e. { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } |-> ( ( iEdg ` G ) ` x ) ) : { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } -1-1-onto-> { e e. E | e = { U } } ) | 
						
							| 20 | 14 19 | hasheqf1od |  |-  ( ( G e. USHGraph /\ U e. V ) -> ( # ` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } ) = ( # ` { e e. E | e = { U } } ) ) | 
						
							| 21 | 10 20 | oveq12d |  |-  ( ( G e. USHGraph /\ U e. V ) -> ( ( # ` { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } ) +e ( # ` { i e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` i ) = { U } } ) ) = ( ( # ` { e e. E | U e. e } ) +e ( # ` { e e. E | e = { U } } ) ) ) | 
						
							| 22 | 5 9 21 | 3eqtrd |  |-  ( ( G e. USHGraph /\ U e. V ) -> ( D ` U ) = ( ( # ` { e e. E | U e. e } ) +e ( # ` { e e. E | e = { U } } ) ) ) |