| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vtxdushgrfvedg.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | vtxdushgrfvedg.e |  |-  E = ( Edg ` G ) | 
						
							| 3 |  | fvex |  |-  ( iEdg ` G ) e. _V | 
						
							| 4 | 3 | dmex |  |-  dom ( iEdg ` G ) e. _V | 
						
							| 5 | 4 | rabex |  |-  { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } e. _V | 
						
							| 6 | 5 | a1i |  |-  ( ( G e. USHGraph /\ U e. V ) -> { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } e. _V ) | 
						
							| 7 |  | eqid |  |-  ( iEdg ` G ) = ( iEdg ` G ) | 
						
							| 8 |  | eqid |  |-  { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } = { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } | 
						
							| 9 |  | eleq2w |  |-  ( e = c -> ( U e. e <-> U e. c ) ) | 
						
							| 10 | 9 | cbvrabv |  |-  { e e. E | U e. e } = { c e. E | U e. c } | 
						
							| 11 |  | eqid |  |-  ( x e. { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } |-> ( ( iEdg ` G ) ` x ) ) = ( x e. { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } |-> ( ( iEdg ` G ) ` x ) ) | 
						
							| 12 | 2 7 1 8 10 11 | ushgredgedg |  |-  ( ( G e. USHGraph /\ U e. V ) -> ( x e. { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } |-> ( ( iEdg ` G ) ` x ) ) : { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } -1-1-onto-> { e e. E | U e. e } ) | 
						
							| 13 | 6 12 | hasheqf1od |  |-  ( ( G e. USHGraph /\ U e. V ) -> ( # ` { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } ) = ( # ` { e e. E | U e. e } ) ) |