Description: A universal vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 14-Oct-2017) (Revised by AV, 30-Oct-2020) (Proof shortened by AV, 14-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | uvtxel.v | |- V = ( Vtx ` G ) |
|
Assertion | vtxnbuvtx | |- ( N e. ( UnivVtx ` G ) -> A. n e. ( V \ { N } ) n e. ( G NeighbVtx N ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uvtxel.v | |- V = ( Vtx ` G ) |
|
2 | 1 | uvtxel | |- ( N e. ( UnivVtx ` G ) <-> ( N e. V /\ A. n e. ( V \ { N } ) n e. ( G NeighbVtx N ) ) ) |
3 | 2 | simprbi | |- ( N e. ( UnivVtx ` G ) -> A. n e. ( V \ { N } ) n e. ( G NeighbVtx N ) ) |