| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq1 |  |-  ( g = G -> ( g e. ( _V X. _V ) <-> G e. ( _V X. _V ) ) ) | 
						
							| 2 |  | fveq2 |  |-  ( g = G -> ( 1st ` g ) = ( 1st ` G ) ) | 
						
							| 3 |  | fveq2 |  |-  ( g = G -> ( Base ` g ) = ( Base ` G ) ) | 
						
							| 4 | 1 2 3 | ifbieq12d |  |-  ( g = G -> if ( g e. ( _V X. _V ) , ( 1st ` g ) , ( Base ` g ) ) = if ( G e. ( _V X. _V ) , ( 1st ` G ) , ( Base ` G ) ) ) | 
						
							| 5 |  | df-vtx |  |-  Vtx = ( g e. _V |-> if ( g e. ( _V X. _V ) , ( 1st ` g ) , ( Base ` g ) ) ) | 
						
							| 6 |  | fvex |  |-  ( 1st ` G ) e. _V | 
						
							| 7 |  | fvex |  |-  ( Base ` G ) e. _V | 
						
							| 8 | 6 7 | ifex |  |-  if ( G e. ( _V X. _V ) , ( 1st ` G ) , ( Base ` G ) ) e. _V | 
						
							| 9 | 4 5 8 | fvmpt |  |-  ( G e. _V -> ( Vtx ` G ) = if ( G e. ( _V X. _V ) , ( 1st ` G ) , ( Base ` G ) ) ) | 
						
							| 10 |  | fvprc |  |-  ( -. G e. _V -> ( Base ` G ) = (/) ) | 
						
							| 11 |  | prcnel |  |-  ( -. G e. _V -> -. G e. ( _V X. _V ) ) | 
						
							| 12 | 11 | iffalsed |  |-  ( -. G e. _V -> if ( G e. ( _V X. _V ) , ( 1st ` G ) , ( Base ` G ) ) = ( Base ` G ) ) | 
						
							| 13 |  | fvprc |  |-  ( -. G e. _V -> ( Vtx ` G ) = (/) ) | 
						
							| 14 | 10 12 13 | 3eqtr4rd |  |-  ( -. G e. _V -> ( Vtx ` G ) = if ( G e. ( _V X. _V ) , ( 1st ` G ) , ( Base ` G ) ) ) | 
						
							| 15 | 9 14 | pm2.61i |  |-  ( Vtx ` G ) = if ( G e. ( _V X. _V ) , ( 1st ` G ) , ( Base ` G ) ) |