| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wallispi.1 |
|- F = ( k e. NN |-> ( ( ( 2 x. k ) / ( ( 2 x. k ) - 1 ) ) x. ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) ) |
| 2 |
|
wallispi.2 |
|- W = ( n e. NN |-> ( seq 1 ( x. , F ) ` n ) ) |
| 3 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 4 |
|
1zzd |
|- ( T. -> 1 e. ZZ ) |
| 5 |
|
eqid |
|- ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) = ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) |
| 6 |
|
eqid |
|- ( n e. NN |-> ( ( ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) ` ( 2 x. n ) ) / ( ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) ` ( ( 2 x. n ) + 1 ) ) ) ) = ( n e. NN |-> ( ( ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) ` ( 2 x. n ) ) / ( ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) ` ( ( 2 x. n ) + 1 ) ) ) ) |
| 7 |
|
eqid |
|- ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) = ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) |
| 8 |
|
eqid |
|- ( n e. NN |-> ( ( ( 2 x. n ) + 1 ) / ( 2 x. n ) ) ) = ( n e. NN |-> ( ( ( 2 x. n ) + 1 ) / ( 2 x. n ) ) ) |
| 9 |
1 5 6 7 8
|
wallispilem5 |
|- ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) ~~> 1 |
| 10 |
9
|
a1i |
|- ( T. -> ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) ~~> 1 ) |
| 11 |
|
2cnd |
|- ( T. -> 2 e. CC ) |
| 12 |
|
picn |
|- _pi e. CC |
| 13 |
12
|
a1i |
|- ( T. -> _pi e. CC ) |
| 14 |
|
pire |
|- _pi e. RR |
| 15 |
|
pipos |
|- 0 < _pi |
| 16 |
14 15
|
gt0ne0ii |
|- _pi =/= 0 |
| 17 |
16
|
a1i |
|- ( T. -> _pi =/= 0 ) |
| 18 |
11 13 17
|
divcld |
|- ( T. -> ( 2 / _pi ) e. CC ) |
| 19 |
|
nnex |
|- NN e. _V |
| 20 |
19
|
mptex |
|- ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) e. _V |
| 21 |
20
|
a1i |
|- ( T. -> ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) e. _V ) |
| 22 |
12
|
a1i |
|- ( n e. NN -> _pi e. CC ) |
| 23 |
22
|
halfcld |
|- ( n e. NN -> ( _pi / 2 ) e. CC ) |
| 24 |
|
elnnuz |
|- ( n e. NN <-> n e. ( ZZ>= ` 1 ) ) |
| 25 |
24
|
biimpi |
|- ( n e. NN -> n e. ( ZZ>= ` 1 ) ) |
| 26 |
|
oveq2 |
|- ( k = j -> ( 2 x. k ) = ( 2 x. j ) ) |
| 27 |
26
|
oveq1d |
|- ( k = j -> ( ( 2 x. k ) - 1 ) = ( ( 2 x. j ) - 1 ) ) |
| 28 |
26 27
|
oveq12d |
|- ( k = j -> ( ( 2 x. k ) / ( ( 2 x. k ) - 1 ) ) = ( ( 2 x. j ) / ( ( 2 x. j ) - 1 ) ) ) |
| 29 |
26
|
oveq1d |
|- ( k = j -> ( ( 2 x. k ) + 1 ) = ( ( 2 x. j ) + 1 ) ) |
| 30 |
26 29
|
oveq12d |
|- ( k = j -> ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) = ( ( 2 x. j ) / ( ( 2 x. j ) + 1 ) ) ) |
| 31 |
28 30
|
oveq12d |
|- ( k = j -> ( ( ( 2 x. k ) / ( ( 2 x. k ) - 1 ) ) x. ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) = ( ( ( 2 x. j ) / ( ( 2 x. j ) - 1 ) ) x. ( ( 2 x. j ) / ( ( 2 x. j ) + 1 ) ) ) ) |
| 32 |
|
elfznn |
|- ( j e. ( 1 ... n ) -> j e. NN ) |
| 33 |
|
2cnd |
|- ( j e. NN -> 2 e. CC ) |
| 34 |
|
nncn |
|- ( j e. NN -> j e. CC ) |
| 35 |
33 34
|
mulcld |
|- ( j e. NN -> ( 2 x. j ) e. CC ) |
| 36 |
|
1cnd |
|- ( j e. NN -> 1 e. CC ) |
| 37 |
35 36
|
subcld |
|- ( j e. NN -> ( ( 2 x. j ) - 1 ) e. CC ) |
| 38 |
|
1red |
|- ( j e. NN -> 1 e. RR ) |
| 39 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
| 40 |
38 38
|
remulcld |
|- ( j e. NN -> ( 1 x. 1 ) e. RR ) |
| 41 |
|
2re |
|- 2 e. RR |
| 42 |
41
|
a1i |
|- ( j e. NN -> 2 e. RR ) |
| 43 |
42 38
|
remulcld |
|- ( j e. NN -> ( 2 x. 1 ) e. RR ) |
| 44 |
|
nnre |
|- ( j e. NN -> j e. RR ) |
| 45 |
42 44
|
remulcld |
|- ( j e. NN -> ( 2 x. j ) e. RR ) |
| 46 |
|
1rp |
|- 1 e. RR+ |
| 47 |
46
|
a1i |
|- ( j e. NN -> 1 e. RR+ ) |
| 48 |
|
1lt2 |
|- 1 < 2 |
| 49 |
48
|
a1i |
|- ( j e. NN -> 1 < 2 ) |
| 50 |
38 42 47 49
|
ltmul1dd |
|- ( j e. NN -> ( 1 x. 1 ) < ( 2 x. 1 ) ) |
| 51 |
|
0le2 |
|- 0 <_ 2 |
| 52 |
51
|
a1i |
|- ( j e. NN -> 0 <_ 2 ) |
| 53 |
|
nnge1 |
|- ( j e. NN -> 1 <_ j ) |
| 54 |
38 44 42 52 53
|
lemul2ad |
|- ( j e. NN -> ( 2 x. 1 ) <_ ( 2 x. j ) ) |
| 55 |
40 43 45 50 54
|
ltletrd |
|- ( j e. NN -> ( 1 x. 1 ) < ( 2 x. j ) ) |
| 56 |
39 55
|
eqbrtrrid |
|- ( j e. NN -> 1 < ( 2 x. j ) ) |
| 57 |
38 56
|
gtned |
|- ( j e. NN -> ( 2 x. j ) =/= 1 ) |
| 58 |
35 36 57
|
subne0d |
|- ( j e. NN -> ( ( 2 x. j ) - 1 ) =/= 0 ) |
| 59 |
35 37 58
|
divcld |
|- ( j e. NN -> ( ( 2 x. j ) / ( ( 2 x. j ) - 1 ) ) e. CC ) |
| 60 |
35 36
|
addcld |
|- ( j e. NN -> ( ( 2 x. j ) + 1 ) e. CC ) |
| 61 |
|
0red |
|- ( j e. NN -> 0 e. RR ) |
| 62 |
45 38
|
readdcld |
|- ( j e. NN -> ( ( 2 x. j ) + 1 ) e. RR ) |
| 63 |
47
|
rpgt0d |
|- ( j e. NN -> 0 < 1 ) |
| 64 |
|
2rp |
|- 2 e. RR+ |
| 65 |
64
|
a1i |
|- ( j e. NN -> 2 e. RR+ ) |
| 66 |
|
nnrp |
|- ( j e. NN -> j e. RR+ ) |
| 67 |
65 66
|
rpmulcld |
|- ( j e. NN -> ( 2 x. j ) e. RR+ ) |
| 68 |
38 67
|
ltaddrp2d |
|- ( j e. NN -> 1 < ( ( 2 x. j ) + 1 ) ) |
| 69 |
61 38 62 63 68
|
lttrd |
|- ( j e. NN -> 0 < ( ( 2 x. j ) + 1 ) ) |
| 70 |
61 69
|
gtned |
|- ( j e. NN -> ( ( 2 x. j ) + 1 ) =/= 0 ) |
| 71 |
35 60 70
|
divcld |
|- ( j e. NN -> ( ( 2 x. j ) / ( ( 2 x. j ) + 1 ) ) e. CC ) |
| 72 |
59 71
|
mulcld |
|- ( j e. NN -> ( ( ( 2 x. j ) / ( ( 2 x. j ) - 1 ) ) x. ( ( 2 x. j ) / ( ( 2 x. j ) + 1 ) ) ) e. CC ) |
| 73 |
32 72
|
syl |
|- ( j e. ( 1 ... n ) -> ( ( ( 2 x. j ) / ( ( 2 x. j ) - 1 ) ) x. ( ( 2 x. j ) / ( ( 2 x. j ) + 1 ) ) ) e. CC ) |
| 74 |
1 31 32 73
|
fvmptd3 |
|- ( j e. ( 1 ... n ) -> ( F ` j ) = ( ( ( 2 x. j ) / ( ( 2 x. j ) - 1 ) ) x. ( ( 2 x. j ) / ( ( 2 x. j ) + 1 ) ) ) ) |
| 75 |
64
|
a1i |
|- ( j e. ( 1 ... n ) -> 2 e. RR+ ) |
| 76 |
32
|
nnrpd |
|- ( j e. ( 1 ... n ) -> j e. RR+ ) |
| 77 |
75 76
|
rpmulcld |
|- ( j e. ( 1 ... n ) -> ( 2 x. j ) e. RR+ ) |
| 78 |
45 38
|
resubcld |
|- ( j e. NN -> ( ( 2 x. j ) - 1 ) e. RR ) |
| 79 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 80 |
38 45 38 56
|
ltsub1dd |
|- ( j e. NN -> ( 1 - 1 ) < ( ( 2 x. j ) - 1 ) ) |
| 81 |
79 80
|
eqbrtrrid |
|- ( j e. NN -> 0 < ( ( 2 x. j ) - 1 ) ) |
| 82 |
78 81
|
elrpd |
|- ( j e. NN -> ( ( 2 x. j ) - 1 ) e. RR+ ) |
| 83 |
32 82
|
syl |
|- ( j e. ( 1 ... n ) -> ( ( 2 x. j ) - 1 ) e. RR+ ) |
| 84 |
77 83
|
rpdivcld |
|- ( j e. ( 1 ... n ) -> ( ( 2 x. j ) / ( ( 2 x. j ) - 1 ) ) e. RR+ ) |
| 85 |
41
|
a1i |
|- ( j e. ( 1 ... n ) -> 2 e. RR ) |
| 86 |
32
|
nnred |
|- ( j e. ( 1 ... n ) -> j e. RR ) |
| 87 |
85 86
|
remulcld |
|- ( j e. ( 1 ... n ) -> ( 2 x. j ) e. RR ) |
| 88 |
75
|
rpge0d |
|- ( j e. ( 1 ... n ) -> 0 <_ 2 ) |
| 89 |
76
|
rpge0d |
|- ( j e. ( 1 ... n ) -> 0 <_ j ) |
| 90 |
85 86 88 89
|
mulge0d |
|- ( j e. ( 1 ... n ) -> 0 <_ ( 2 x. j ) ) |
| 91 |
87 90
|
ge0p1rpd |
|- ( j e. ( 1 ... n ) -> ( ( 2 x. j ) + 1 ) e. RR+ ) |
| 92 |
77 91
|
rpdivcld |
|- ( j e. ( 1 ... n ) -> ( ( 2 x. j ) / ( ( 2 x. j ) + 1 ) ) e. RR+ ) |
| 93 |
84 92
|
rpmulcld |
|- ( j e. ( 1 ... n ) -> ( ( ( 2 x. j ) / ( ( 2 x. j ) - 1 ) ) x. ( ( 2 x. j ) / ( ( 2 x. j ) + 1 ) ) ) e. RR+ ) |
| 94 |
74 93
|
eqeltrd |
|- ( j e. ( 1 ... n ) -> ( F ` j ) e. RR+ ) |
| 95 |
94
|
adantl |
|- ( ( n e. NN /\ j e. ( 1 ... n ) ) -> ( F ` j ) e. RR+ ) |
| 96 |
|
rpmulcl |
|- ( ( j e. RR+ /\ w e. RR+ ) -> ( j x. w ) e. RR+ ) |
| 97 |
96
|
adantl |
|- ( ( n e. NN /\ ( j e. RR+ /\ w e. RR+ ) ) -> ( j x. w ) e. RR+ ) |
| 98 |
25 95 97
|
seqcl |
|- ( n e. NN -> ( seq 1 ( x. , F ) ` n ) e. RR+ ) |
| 99 |
98
|
rpcnd |
|- ( n e. NN -> ( seq 1 ( x. , F ) ` n ) e. CC ) |
| 100 |
98
|
rpne0d |
|- ( n e. NN -> ( seq 1 ( x. , F ) ` n ) =/= 0 ) |
| 101 |
99 100
|
reccld |
|- ( n e. NN -> ( 1 / ( seq 1 ( x. , F ) ` n ) ) e. CC ) |
| 102 |
23 101
|
mulcld |
|- ( n e. NN -> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) e. CC ) |
| 103 |
7 102
|
fmpti |
|- ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) : NN --> CC |
| 104 |
103
|
a1i |
|- ( T. -> ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) : NN --> CC ) |
| 105 |
104
|
ffvelcdmda |
|- ( ( T. /\ j e. NN ) -> ( ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) ` j ) e. CC ) |
| 106 |
|
fveq2 |
|- ( n = j -> ( seq 1 ( x. , F ) ` n ) = ( seq 1 ( x. , F ) ` j ) ) |
| 107 |
106
|
eleq1d |
|- ( n = j -> ( ( seq 1 ( x. , F ) ` n ) e. RR+ <-> ( seq 1 ( x. , F ) ` j ) e. RR+ ) ) |
| 108 |
107 98
|
vtoclga |
|- ( j e. NN -> ( seq 1 ( x. , F ) ` j ) e. RR+ ) |
| 109 |
108
|
rpcnd |
|- ( j e. NN -> ( seq 1 ( x. , F ) ` j ) e. CC ) |
| 110 |
108
|
rpne0d |
|- ( j e. NN -> ( seq 1 ( x. , F ) ` j ) =/= 0 ) |
| 111 |
36 109 110
|
divrecd |
|- ( j e. NN -> ( 1 / ( seq 1 ( x. , F ) ` j ) ) = ( 1 x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) ) |
| 112 |
12
|
a1i |
|- ( j e. NN -> _pi e. CC ) |
| 113 |
65
|
rpne0d |
|- ( j e. NN -> 2 =/= 0 ) |
| 114 |
16
|
a1i |
|- ( j e. NN -> _pi =/= 0 ) |
| 115 |
33 112 113 114
|
divcan6d |
|- ( j e. NN -> ( ( 2 / _pi ) x. ( _pi / 2 ) ) = 1 ) |
| 116 |
115
|
eqcomd |
|- ( j e. NN -> 1 = ( ( 2 / _pi ) x. ( _pi / 2 ) ) ) |
| 117 |
116
|
oveq1d |
|- ( j e. NN -> ( 1 x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) = ( ( ( 2 / _pi ) x. ( _pi / 2 ) ) x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) ) |
| 118 |
33 112 114
|
divcld |
|- ( j e. NN -> ( 2 / _pi ) e. CC ) |
| 119 |
112
|
halfcld |
|- ( j e. NN -> ( _pi / 2 ) e. CC ) |
| 120 |
109 110
|
reccld |
|- ( j e. NN -> ( 1 / ( seq 1 ( x. , F ) ` j ) ) e. CC ) |
| 121 |
118 119 120
|
mulassd |
|- ( j e. NN -> ( ( ( 2 / _pi ) x. ( _pi / 2 ) ) x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) = ( ( 2 / _pi ) x. ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) ) ) |
| 122 |
111 117 121
|
3eqtrd |
|- ( j e. NN -> ( 1 / ( seq 1 ( x. , F ) ` j ) ) = ( ( 2 / _pi ) x. ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) ) ) |
| 123 |
|
eqidd |
|- ( j e. NN -> ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) = ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) |
| 124 |
106
|
oveq2d |
|- ( n = j -> ( 1 / ( seq 1 ( x. , F ) ` n ) ) = ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) |
| 125 |
124
|
adantl |
|- ( ( j e. NN /\ n = j ) -> ( 1 / ( seq 1 ( x. , F ) ` n ) ) = ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) |
| 126 |
|
id |
|- ( j e. NN -> j e. NN ) |
| 127 |
108
|
rpreccld |
|- ( j e. NN -> ( 1 / ( seq 1 ( x. , F ) ` j ) ) e. RR+ ) |
| 128 |
123 125 126 127
|
fvmptd |
|- ( j e. NN -> ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) = ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) |
| 129 |
|
eqidd |
|- ( j e. NN -> ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) = ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) ) |
| 130 |
125
|
oveq2d |
|- ( ( j e. NN /\ n = j ) -> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) = ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) ) |
| 131 |
119 120
|
mulcld |
|- ( j e. NN -> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) e. CC ) |
| 132 |
129 130 126 131
|
fvmptd |
|- ( j e. NN -> ( ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) ` j ) = ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) ) |
| 133 |
132
|
oveq2d |
|- ( j e. NN -> ( ( 2 / _pi ) x. ( ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) ` j ) ) = ( ( 2 / _pi ) x. ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) ) ) |
| 134 |
122 128 133
|
3eqtr4d |
|- ( j e. NN -> ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) = ( ( 2 / _pi ) x. ( ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) ` j ) ) ) |
| 135 |
134
|
adantl |
|- ( ( T. /\ j e. NN ) -> ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) = ( ( 2 / _pi ) x. ( ( n e. NN |-> ( ( _pi / 2 ) x. ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ) ` j ) ) ) |
| 136 |
3 4 10 18 21 105 135
|
climmulc2 |
|- ( T. -> ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ~~> ( ( 2 / _pi ) x. 1 ) ) |
| 137 |
|
2cn |
|- 2 e. CC |
| 138 |
137 12 16
|
divcli |
|- ( 2 / _pi ) e. CC |
| 139 |
138
|
mulridi |
|- ( ( 2 / _pi ) x. 1 ) = ( 2 / _pi ) |
| 140 |
136 139
|
breqtrdi |
|- ( T. -> ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ~~> ( 2 / _pi ) ) |
| 141 |
|
2ne0 |
|- 2 =/= 0 |
| 142 |
137 12 141 16
|
divne0i |
|- ( 2 / _pi ) =/= 0 |
| 143 |
142
|
a1i |
|- ( T. -> ( 2 / _pi ) =/= 0 ) |
| 144 |
128 120
|
eqeltrd |
|- ( j e. NN -> ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) e. CC ) |
| 145 |
109 110
|
recne0d |
|- ( j e. NN -> ( 1 / ( seq 1 ( x. , F ) ` j ) ) =/= 0 ) |
| 146 |
128 145
|
eqnetrd |
|- ( j e. NN -> ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) =/= 0 ) |
| 147 |
|
nelsn |
|- ( ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) =/= 0 -> -. ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) e. { 0 } ) |
| 148 |
146 147
|
syl |
|- ( j e. NN -> -. ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) e. { 0 } ) |
| 149 |
144 148
|
eldifd |
|- ( j e. NN -> ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) e. ( CC \ { 0 } ) ) |
| 150 |
149
|
adantl |
|- ( ( T. /\ j e. NN ) -> ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) e. ( CC \ { 0 } ) ) |
| 151 |
109 110
|
recrecd |
|- ( j e. NN -> ( 1 / ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) = ( seq 1 ( x. , F ) ` j ) ) |
| 152 |
123 125 126 120
|
fvmptd |
|- ( j e. NN -> ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) = ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) |
| 153 |
152
|
oveq2d |
|- ( j e. NN -> ( 1 / ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) ) = ( 1 / ( 1 / ( seq 1 ( x. , F ) ` j ) ) ) ) |
| 154 |
106 2 98
|
fvmpt3 |
|- ( j e. NN -> ( W ` j ) = ( seq 1 ( x. , F ) ` j ) ) |
| 155 |
151 153 154
|
3eqtr4rd |
|- ( j e. NN -> ( W ` j ) = ( 1 / ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) ) ) |
| 156 |
155
|
adantl |
|- ( ( T. /\ j e. NN ) -> ( W ` j ) = ( 1 / ( ( n e. NN |-> ( 1 / ( seq 1 ( x. , F ) ` n ) ) ) ` j ) ) ) |
| 157 |
19
|
mptex |
|- ( n e. NN |-> ( seq 1 ( x. , F ) ` n ) ) e. _V |
| 158 |
2 157
|
eqeltri |
|- W e. _V |
| 159 |
158
|
a1i |
|- ( T. -> W e. _V ) |
| 160 |
3 4 140 143 150 156 159
|
climrec |
|- ( T. -> W ~~> ( 1 / ( 2 / _pi ) ) ) |
| 161 |
160
|
mptru |
|- W ~~> ( 1 / ( 2 / _pi ) ) |
| 162 |
|
recdiv |
|- ( ( ( 2 e. CC /\ 2 =/= 0 ) /\ ( _pi e. CC /\ _pi =/= 0 ) ) -> ( 1 / ( 2 / _pi ) ) = ( _pi / 2 ) ) |
| 163 |
137 141 12 16 162
|
mp4an |
|- ( 1 / ( 2 / _pi ) ) = ( _pi / 2 ) |
| 164 |
161 163
|
breqtri |
|- W ~~> ( _pi / 2 ) |