| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wallispi2.1 |
|- V = ( n e. NN |-> ( ( ( ( 2 ^ ( 4 x. n ) ) x. ( ( ! ` n ) ^ 4 ) ) / ( ( ! ` ( 2 x. n ) ) ^ 2 ) ) / ( ( 2 x. n ) + 1 ) ) ) |
| 2 |
|
eqid |
|- ( k e. NN |-> ( ( ( 2 x. k ) / ( ( 2 x. k ) - 1 ) ) x. ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) ) = ( k e. NN |-> ( ( ( 2 x. k ) / ( ( 2 x. k ) - 1 ) ) x. ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) ) |
| 3 |
|
1cnd |
|- ( n e. NN -> 1 e. CC ) |
| 4 |
|
2cnd |
|- ( n e. NN -> 2 e. CC ) |
| 5 |
|
nncn |
|- ( n e. NN -> n e. CC ) |
| 6 |
4 5
|
mulcld |
|- ( n e. NN -> ( 2 x. n ) e. CC ) |
| 7 |
6 3
|
addcld |
|- ( n e. NN -> ( ( 2 x. n ) + 1 ) e. CC ) |
| 8 |
|
elnnuz |
|- ( n e. NN <-> n e. ( ZZ>= ` 1 ) ) |
| 9 |
8
|
biimpi |
|- ( n e. NN -> n e. ( ZZ>= ` 1 ) ) |
| 10 |
|
eqidd |
|- ( m e. ( 1 ... n ) -> ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) = ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ) |
| 11 |
|
simpr |
|- ( ( m e. ( 1 ... n ) /\ k = m ) -> k = m ) |
| 12 |
11
|
oveq2d |
|- ( ( m e. ( 1 ... n ) /\ k = m ) -> ( 2 x. k ) = ( 2 x. m ) ) |
| 13 |
12
|
oveq1d |
|- ( ( m e. ( 1 ... n ) /\ k = m ) -> ( ( 2 x. k ) ^ 4 ) = ( ( 2 x. m ) ^ 4 ) ) |
| 14 |
12
|
oveq1d |
|- ( ( m e. ( 1 ... n ) /\ k = m ) -> ( ( 2 x. k ) - 1 ) = ( ( 2 x. m ) - 1 ) ) |
| 15 |
12 14
|
oveq12d |
|- ( ( m e. ( 1 ... n ) /\ k = m ) -> ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) = ( ( 2 x. m ) x. ( ( 2 x. m ) - 1 ) ) ) |
| 16 |
15
|
oveq1d |
|- ( ( m e. ( 1 ... n ) /\ k = m ) -> ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) = ( ( ( 2 x. m ) x. ( ( 2 x. m ) - 1 ) ) ^ 2 ) ) |
| 17 |
13 16
|
oveq12d |
|- ( ( m e. ( 1 ... n ) /\ k = m ) -> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) = ( ( ( 2 x. m ) ^ 4 ) / ( ( ( 2 x. m ) x. ( ( 2 x. m ) - 1 ) ) ^ 2 ) ) ) |
| 18 |
|
elfznn |
|- ( m e. ( 1 ... n ) -> m e. NN ) |
| 19 |
|
2cnd |
|- ( m e. ( 1 ... n ) -> 2 e. CC ) |
| 20 |
18
|
nncnd |
|- ( m e. ( 1 ... n ) -> m e. CC ) |
| 21 |
19 20
|
mulcld |
|- ( m e. ( 1 ... n ) -> ( 2 x. m ) e. CC ) |
| 22 |
|
4nn0 |
|- 4 e. NN0 |
| 23 |
22
|
a1i |
|- ( m e. ( 1 ... n ) -> 4 e. NN0 ) |
| 24 |
21 23
|
expcld |
|- ( m e. ( 1 ... n ) -> ( ( 2 x. m ) ^ 4 ) e. CC ) |
| 25 |
|
1cnd |
|- ( m e. ( 1 ... n ) -> 1 e. CC ) |
| 26 |
21 25
|
subcld |
|- ( m e. ( 1 ... n ) -> ( ( 2 x. m ) - 1 ) e. CC ) |
| 27 |
21 26
|
mulcld |
|- ( m e. ( 1 ... n ) -> ( ( 2 x. m ) x. ( ( 2 x. m ) - 1 ) ) e. CC ) |
| 28 |
27
|
sqcld |
|- ( m e. ( 1 ... n ) -> ( ( ( 2 x. m ) x. ( ( 2 x. m ) - 1 ) ) ^ 2 ) e. CC ) |
| 29 |
|
2ne0 |
|- 2 =/= 0 |
| 30 |
29
|
a1i |
|- ( m e. ( 1 ... n ) -> 2 =/= 0 ) |
| 31 |
18
|
nnne0d |
|- ( m e. ( 1 ... n ) -> m =/= 0 ) |
| 32 |
19 20 30 31
|
mulne0d |
|- ( m e. ( 1 ... n ) -> ( 2 x. m ) =/= 0 ) |
| 33 |
|
1red |
|- ( m e. ( 1 ... n ) -> 1 e. RR ) |
| 34 |
|
2re |
|- 2 e. RR |
| 35 |
34
|
a1i |
|- ( m e. ( 1 ... n ) -> 2 e. RR ) |
| 36 |
35 33
|
remulcld |
|- ( m e. ( 1 ... n ) -> ( 2 x. 1 ) e. RR ) |
| 37 |
18
|
nnred |
|- ( m e. ( 1 ... n ) -> m e. RR ) |
| 38 |
35 37
|
remulcld |
|- ( m e. ( 1 ... n ) -> ( 2 x. m ) e. RR ) |
| 39 |
|
1lt2 |
|- 1 < 2 |
| 40 |
39
|
a1i |
|- ( m e. ( 1 ... n ) -> 1 < 2 ) |
| 41 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
| 42 |
40 41
|
breqtrrdi |
|- ( m e. ( 1 ... n ) -> 1 < ( 2 x. 1 ) ) |
| 43 |
|
0le2 |
|- 0 <_ 2 |
| 44 |
43
|
a1i |
|- ( m e. ( 1 ... n ) -> 0 <_ 2 ) |
| 45 |
|
elfzle1 |
|- ( m e. ( 1 ... n ) -> 1 <_ m ) |
| 46 |
33 37 35 44 45
|
lemul2ad |
|- ( m e. ( 1 ... n ) -> ( 2 x. 1 ) <_ ( 2 x. m ) ) |
| 47 |
33 36 38 42 46
|
ltletrd |
|- ( m e. ( 1 ... n ) -> 1 < ( 2 x. m ) ) |
| 48 |
33 47
|
gtned |
|- ( m e. ( 1 ... n ) -> ( 2 x. m ) =/= 1 ) |
| 49 |
21 25 48
|
subne0d |
|- ( m e. ( 1 ... n ) -> ( ( 2 x. m ) - 1 ) =/= 0 ) |
| 50 |
21 26 32 49
|
mulne0d |
|- ( m e. ( 1 ... n ) -> ( ( 2 x. m ) x. ( ( 2 x. m ) - 1 ) ) =/= 0 ) |
| 51 |
|
2z |
|- 2 e. ZZ |
| 52 |
51
|
a1i |
|- ( m e. ( 1 ... n ) -> 2 e. ZZ ) |
| 53 |
27 50 52
|
expne0d |
|- ( m e. ( 1 ... n ) -> ( ( ( 2 x. m ) x. ( ( 2 x. m ) - 1 ) ) ^ 2 ) =/= 0 ) |
| 54 |
24 28 53
|
divcld |
|- ( m e. ( 1 ... n ) -> ( ( ( 2 x. m ) ^ 4 ) / ( ( ( 2 x. m ) x. ( ( 2 x. m ) - 1 ) ) ^ 2 ) ) e. CC ) |
| 55 |
10 17 18 54
|
fvmptd |
|- ( m e. ( 1 ... n ) -> ( ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ` m ) = ( ( ( 2 x. m ) ^ 4 ) / ( ( ( 2 x. m ) x. ( ( 2 x. m ) - 1 ) ) ^ 2 ) ) ) |
| 56 |
55 54
|
eqeltrd |
|- ( m e. ( 1 ... n ) -> ( ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ` m ) e. CC ) |
| 57 |
56
|
adantl |
|- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ` m ) e. CC ) |
| 58 |
|
mulcl |
|- ( ( m e. CC /\ w e. CC ) -> ( m x. w ) e. CC ) |
| 59 |
58
|
adantl |
|- ( ( n e. NN /\ ( m e. CC /\ w e. CC ) ) -> ( m x. w ) e. CC ) |
| 60 |
9 57 59
|
seqcl |
|- ( n e. NN -> ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ) ` n ) e. CC ) |
| 61 |
|
2nn |
|- 2 e. NN |
| 62 |
61
|
a1i |
|- ( n e. NN -> 2 e. NN ) |
| 63 |
|
id |
|- ( n e. NN -> n e. NN ) |
| 64 |
62 63
|
nnmulcld |
|- ( n e. NN -> ( 2 x. n ) e. NN ) |
| 65 |
64
|
peano2nnd |
|- ( n e. NN -> ( ( 2 x. n ) + 1 ) e. NN ) |
| 66 |
65
|
nnne0d |
|- ( n e. NN -> ( ( 2 x. n ) + 1 ) =/= 0 ) |
| 67 |
3 7 60 66
|
div32d |
|- ( n e. NN -> ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ) ` n ) ) = ( 1 x. ( ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ) ` n ) / ( ( 2 x. n ) + 1 ) ) ) ) |
| 68 |
60 7 66
|
divcld |
|- ( n e. NN -> ( ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ) ` n ) / ( ( 2 x. n ) + 1 ) ) e. CC ) |
| 69 |
68
|
mullidd |
|- ( n e. NN -> ( 1 x. ( ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ) ` n ) / ( ( 2 x. n ) + 1 ) ) ) = ( ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ) ` n ) / ( ( 2 x. n ) + 1 ) ) ) |
| 70 |
|
wallispi2lem2 |
|- ( n e. NN -> ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ) ` n ) = ( ( ( 2 ^ ( 4 x. n ) ) x. ( ( ! ` n ) ^ 4 ) ) / ( ( ! ` ( 2 x. n ) ) ^ 2 ) ) ) |
| 71 |
70
|
oveq1d |
|- ( n e. NN -> ( ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ) ` n ) / ( ( 2 x. n ) + 1 ) ) = ( ( ( ( 2 ^ ( 4 x. n ) ) x. ( ( ! ` n ) ^ 4 ) ) / ( ( ! ` ( 2 x. n ) ) ^ 2 ) ) / ( ( 2 x. n ) + 1 ) ) ) |
| 72 |
67 69 71
|
3eqtrd |
|- ( n e. NN -> ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ) ` n ) ) = ( ( ( ( 2 ^ ( 4 x. n ) ) x. ( ( ! ` n ) ^ 4 ) ) / ( ( ! ` ( 2 x. n ) ) ^ 2 ) ) / ( ( 2 x. n ) + 1 ) ) ) |
| 73 |
72
|
mpteq2ia |
|- ( n e. NN |-> ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ) ` n ) ) ) = ( n e. NN |-> ( ( ( ( 2 ^ ( 4 x. n ) ) x. ( ( ! ` n ) ^ 4 ) ) / ( ( ! ` ( 2 x. n ) ) ^ 2 ) ) / ( ( 2 x. n ) + 1 ) ) ) |
| 74 |
|
wallispi2lem1 |
|- ( n e. NN -> ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) / ( ( 2 x. k ) - 1 ) ) x. ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) ) ) ` n ) = ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ) ` n ) ) ) |
| 75 |
74
|
mpteq2ia |
|- ( n e. NN |-> ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) / ( ( 2 x. k ) - 1 ) ) x. ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) ) ) ` n ) ) = ( n e. NN |-> ( ( 1 / ( ( 2 x. n ) + 1 ) ) x. ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) ^ 4 ) / ( ( ( 2 x. k ) x. ( ( 2 x. k ) - 1 ) ) ^ 2 ) ) ) ) ` n ) ) ) |
| 76 |
73 75 1
|
3eqtr4ri |
|- V = ( n e. NN |-> ( seq 1 ( x. , ( k e. NN |-> ( ( ( 2 x. k ) / ( ( 2 x. k ) - 1 ) ) x. ( ( 2 x. k ) / ( ( 2 x. k ) + 1 ) ) ) ) ) ` n ) ) |
| 77 |
2 76
|
wallispi |
|- V ~~> ( _pi / 2 ) |