| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wallispilem1.1 |
|- I = ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) |
| 2 |
|
wallispilem1.2 |
|- ( ph -> N e. NN0 ) |
| 3 |
|
0re |
|- 0 e. RR |
| 4 |
3
|
a1i |
|- ( ph -> 0 e. RR ) |
| 5 |
|
pire |
|- _pi e. RR |
| 6 |
5
|
a1i |
|- ( ph -> _pi e. RR ) |
| 7 |
|
peano2nn0 |
|- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
| 8 |
2 7
|
syl |
|- ( ph -> ( N + 1 ) e. NN0 ) |
| 9 |
|
iblioosinexp |
|- ( ( 0 e. RR /\ _pi e. RR /\ ( N + 1 ) e. NN0 ) -> ( x e. ( 0 (,) _pi ) |-> ( ( sin ` x ) ^ ( N + 1 ) ) ) e. L^1 ) |
| 10 |
4 6 8 9
|
syl3anc |
|- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( sin ` x ) ^ ( N + 1 ) ) ) e. L^1 ) |
| 11 |
|
iblioosinexp |
|- ( ( 0 e. RR /\ _pi e. RR /\ N e. NN0 ) -> ( x e. ( 0 (,) _pi ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 ) |
| 12 |
4 6 2 11
|
syl3anc |
|- ( ph -> ( x e. ( 0 (,) _pi ) |-> ( ( sin ` x ) ^ N ) ) e. L^1 ) |
| 13 |
|
elioore |
|- ( x e. ( 0 (,) _pi ) -> x e. RR ) |
| 14 |
13
|
resincld |
|- ( x e. ( 0 (,) _pi ) -> ( sin ` x ) e. RR ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( sin ` x ) e. RR ) |
| 16 |
8
|
adantr |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( N + 1 ) e. NN0 ) |
| 17 |
15 16
|
reexpcld |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ ( N + 1 ) ) e. RR ) |
| 18 |
2
|
adantr |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> N e. NN0 ) |
| 19 |
15 18
|
reexpcld |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ N ) e. RR ) |
| 20 |
2
|
nn0zd |
|- ( ph -> N e. ZZ ) |
| 21 |
|
uzid |
|- ( N e. ZZ -> N e. ( ZZ>= ` N ) ) |
| 22 |
20 21
|
syl |
|- ( ph -> N e. ( ZZ>= ` N ) ) |
| 23 |
|
peano2uz |
|- ( N e. ( ZZ>= ` N ) -> ( N + 1 ) e. ( ZZ>= ` N ) ) |
| 24 |
22 23
|
syl |
|- ( ph -> ( N + 1 ) e. ( ZZ>= ` N ) ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( N + 1 ) e. ( ZZ>= ` N ) ) |
| 26 |
14 3
|
jctil |
|- ( x e. ( 0 (,) _pi ) -> ( 0 e. RR /\ ( sin ` x ) e. RR ) ) |
| 27 |
|
sinq12gt0 |
|- ( x e. ( 0 (,) _pi ) -> 0 < ( sin ` x ) ) |
| 28 |
|
ltle |
|- ( ( 0 e. RR /\ ( sin ` x ) e. RR ) -> ( 0 < ( sin ` x ) -> 0 <_ ( sin ` x ) ) ) |
| 29 |
26 27 28
|
sylc |
|- ( x e. ( 0 (,) _pi ) -> 0 <_ ( sin ` x ) ) |
| 30 |
29
|
adantl |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> 0 <_ ( sin ` x ) ) |
| 31 |
|
sinbnd |
|- ( x e. RR -> ( -u 1 <_ ( sin ` x ) /\ ( sin ` x ) <_ 1 ) ) |
| 32 |
13 31
|
syl |
|- ( x e. ( 0 (,) _pi ) -> ( -u 1 <_ ( sin ` x ) /\ ( sin ` x ) <_ 1 ) ) |
| 33 |
32
|
simprd |
|- ( x e. ( 0 (,) _pi ) -> ( sin ` x ) <_ 1 ) |
| 34 |
33
|
adantl |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( sin ` x ) <_ 1 ) |
| 35 |
15 18 25 30 34
|
leexp2rd |
|- ( ( ph /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ ( N + 1 ) ) <_ ( ( sin ` x ) ^ N ) ) |
| 36 |
10 12 17 19 35
|
itgle |
|- ( ph -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N + 1 ) ) _d x <_ S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) |
| 37 |
|
oveq2 |
|- ( n = ( N + 1 ) -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ ( N + 1 ) ) ) |
| 38 |
37
|
adantr |
|- ( ( n = ( N + 1 ) /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ ( N + 1 ) ) ) |
| 39 |
38
|
itgeq2dv |
|- ( n = ( N + 1 ) -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N + 1 ) ) _d x ) |
| 40 |
|
itgex |
|- S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N + 1 ) ) _d x e. _V |
| 41 |
39 1 40
|
fvmpt |
|- ( ( N + 1 ) e. NN0 -> ( I ` ( N + 1 ) ) = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N + 1 ) ) _d x ) |
| 42 |
8 41
|
syl |
|- ( ph -> ( I ` ( N + 1 ) ) = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ ( N + 1 ) ) _d x ) |
| 43 |
|
oveq2 |
|- ( n = N -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ N ) ) |
| 44 |
43
|
adantr |
|- ( ( n = N /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ N ) ) |
| 45 |
44
|
itgeq2dv |
|- ( n = N -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) |
| 46 |
|
itgex |
|- S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x e. _V |
| 47 |
45 1 46
|
fvmpt |
|- ( N e. NN0 -> ( I ` N ) = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) |
| 48 |
2 47
|
syl |
|- ( ph -> ( I ` N ) = S. ( 0 (,) _pi ) ( ( sin ` x ) ^ N ) _d x ) |
| 49 |
36 42 48
|
3brtr4d |
|- ( ph -> ( I ` ( N + 1 ) ) <_ ( I ` N ) ) |