Step |
Hyp |
Ref |
Expression |
1 |
|
wallispilem2.1 |
|- I = ( n e. NN0 |-> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x ) |
2 |
|
0nn0 |
|- 0 e. NN0 |
3 |
|
oveq2 |
|- ( n = 0 -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ 0 ) ) |
4 |
3
|
adantr |
|- ( ( n = 0 /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ 0 ) ) |
5 |
|
ioosscn |
|- ( 0 (,) _pi ) C_ CC |
6 |
5
|
sseli |
|- ( x e. ( 0 (,) _pi ) -> x e. CC ) |
7 |
6
|
sincld |
|- ( x e. ( 0 (,) _pi ) -> ( sin ` x ) e. CC ) |
8 |
7
|
adantl |
|- ( ( n = 0 /\ x e. ( 0 (,) _pi ) ) -> ( sin ` x ) e. CC ) |
9 |
8
|
exp0d |
|- ( ( n = 0 /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ 0 ) = 1 ) |
10 |
4 9
|
eqtrd |
|- ( ( n = 0 /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ n ) = 1 ) |
11 |
10
|
itgeq2dv |
|- ( n = 0 -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x = S. ( 0 (,) _pi ) 1 _d x ) |
12 |
|
ioombl |
|- ( 0 (,) _pi ) e. dom vol |
13 |
|
0re |
|- 0 e. RR |
14 |
|
pire |
|- _pi e. RR |
15 |
|
ioovolcl |
|- ( ( 0 e. RR /\ _pi e. RR ) -> ( vol ` ( 0 (,) _pi ) ) e. RR ) |
16 |
13 14 15
|
mp2an |
|- ( vol ` ( 0 (,) _pi ) ) e. RR |
17 |
|
ax-1cn |
|- 1 e. CC |
18 |
|
itgconst |
|- ( ( ( 0 (,) _pi ) e. dom vol /\ ( vol ` ( 0 (,) _pi ) ) e. RR /\ 1 e. CC ) -> S. ( 0 (,) _pi ) 1 _d x = ( 1 x. ( vol ` ( 0 (,) _pi ) ) ) ) |
19 |
12 16 17 18
|
mp3an |
|- S. ( 0 (,) _pi ) 1 _d x = ( 1 x. ( vol ` ( 0 (,) _pi ) ) ) |
20 |
16
|
recni |
|- ( vol ` ( 0 (,) _pi ) ) e. CC |
21 |
20
|
mulid2i |
|- ( 1 x. ( vol ` ( 0 (,) _pi ) ) ) = ( vol ` ( 0 (,) _pi ) ) |
22 |
|
pipos |
|- 0 < _pi |
23 |
13 14 22
|
ltleii |
|- 0 <_ _pi |
24 |
|
volioo |
|- ( ( 0 e. RR /\ _pi e. RR /\ 0 <_ _pi ) -> ( vol ` ( 0 (,) _pi ) ) = ( _pi - 0 ) ) |
25 |
13 14 23 24
|
mp3an |
|- ( vol ` ( 0 (,) _pi ) ) = ( _pi - 0 ) |
26 |
14
|
recni |
|- _pi e. CC |
27 |
26
|
subid1i |
|- ( _pi - 0 ) = _pi |
28 |
25 27
|
eqtri |
|- ( vol ` ( 0 (,) _pi ) ) = _pi |
29 |
21 28
|
eqtri |
|- ( 1 x. ( vol ` ( 0 (,) _pi ) ) ) = _pi |
30 |
19 29
|
eqtri |
|- S. ( 0 (,) _pi ) 1 _d x = _pi |
31 |
11 30
|
eqtrdi |
|- ( n = 0 -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x = _pi ) |
32 |
14
|
elexi |
|- _pi e. _V |
33 |
31 1 32
|
fvmpt |
|- ( 0 e. NN0 -> ( I ` 0 ) = _pi ) |
34 |
2 33
|
ax-mp |
|- ( I ` 0 ) = _pi |
35 |
|
1nn0 |
|- 1 e. NN0 |
36 |
|
simpl |
|- ( ( n = 1 /\ x e. ( 0 (,) _pi ) ) -> n = 1 ) |
37 |
36
|
oveq2d |
|- ( ( n = 1 /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ n ) = ( ( sin ` x ) ^ 1 ) ) |
38 |
7
|
adantl |
|- ( ( n = 1 /\ x e. ( 0 (,) _pi ) ) -> ( sin ` x ) e. CC ) |
39 |
38
|
exp1d |
|- ( ( n = 1 /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ 1 ) = ( sin ` x ) ) |
40 |
37 39
|
eqtrd |
|- ( ( n = 1 /\ x e. ( 0 (,) _pi ) ) -> ( ( sin ` x ) ^ n ) = ( sin ` x ) ) |
41 |
40
|
itgeq2dv |
|- ( n = 1 -> S. ( 0 (,) _pi ) ( ( sin ` x ) ^ n ) _d x = S. ( 0 (,) _pi ) ( sin ` x ) _d x ) |
42 |
|
itgex |
|- S. ( 0 (,) _pi ) ( sin ` x ) _d x e. _V |
43 |
41 1 42
|
fvmpt |
|- ( 1 e. NN0 -> ( I ` 1 ) = S. ( 0 (,) _pi ) ( sin ` x ) _d x ) |
44 |
35 43
|
ax-mp |
|- ( I ` 1 ) = S. ( 0 (,) _pi ) ( sin ` x ) _d x |
45 |
|
itgsin0pi |
|- S. ( 0 (,) _pi ) ( sin ` x ) _d x = 2 |
46 |
44 45
|
eqtri |
|- ( I ` 1 ) = 2 |
47 |
|
id |
|- ( N e. ( ZZ>= ` 2 ) -> N e. ( ZZ>= ` 2 ) ) |
48 |
1 47
|
itgsinexp |
|- ( N e. ( ZZ>= ` 2 ) -> ( I ` N ) = ( ( ( N - 1 ) / N ) x. ( I ` ( N - 2 ) ) ) ) |
49 |
34 46 48
|
3pm3.2i |
|- ( ( I ` 0 ) = _pi /\ ( I ` 1 ) = 2 /\ ( N e. ( ZZ>= ` 2 ) -> ( I ` N ) = ( ( ( N - 1 ) / N ) x. ( I ` ( N - 2 ) ) ) ) ) |