| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ensym |
|- ( A ~~ B -> B ~~ A ) |
| 2 |
|
endom |
|- ( B ~~ A -> B ~<_ A ) |
| 3 |
|
domwdom |
|- ( B ~<_ A -> B ~<_* A ) |
| 4 |
1 2 3
|
3syl |
|- ( A ~~ B -> B ~<_* A ) |
| 5 |
|
wdomtr |
|- ( ( B ~<_* A /\ A ~<_* C ) -> B ~<_* C ) |
| 6 |
4 5
|
sylan |
|- ( ( A ~~ B /\ A ~<_* C ) -> B ~<_* C ) |
| 7 |
|
endom |
|- ( A ~~ B -> A ~<_ B ) |
| 8 |
|
domwdom |
|- ( A ~<_ B -> A ~<_* B ) |
| 9 |
7 8
|
syl |
|- ( A ~~ B -> A ~<_* B ) |
| 10 |
|
wdomtr |
|- ( ( A ~<_* B /\ B ~<_* C ) -> A ~<_* C ) |
| 11 |
9 10
|
sylan |
|- ( ( A ~~ B /\ B ~<_* C ) -> A ~<_* C ) |
| 12 |
6 11
|
impbida |
|- ( A ~~ B -> ( A ~<_* C <-> B ~<_* C ) ) |