Step |
Hyp |
Ref |
Expression |
1 |
|
ensym |
|- ( A ~~ B -> B ~~ A ) |
2 |
|
endom |
|- ( B ~~ A -> B ~<_ A ) |
3 |
|
domwdom |
|- ( B ~<_ A -> B ~<_* A ) |
4 |
1 2 3
|
3syl |
|- ( A ~~ B -> B ~<_* A ) |
5 |
|
wdomtr |
|- ( ( B ~<_* A /\ A ~<_* C ) -> B ~<_* C ) |
6 |
4 5
|
sylan |
|- ( ( A ~~ B /\ A ~<_* C ) -> B ~<_* C ) |
7 |
|
endom |
|- ( A ~~ B -> A ~<_ B ) |
8 |
|
domwdom |
|- ( A ~<_ B -> A ~<_* B ) |
9 |
7 8
|
syl |
|- ( A ~~ B -> A ~<_* B ) |
10 |
|
wdomtr |
|- ( ( A ~<_* B /\ B ~<_* C ) -> A ~<_* C ) |
11 |
9 10
|
sylan |
|- ( ( A ~~ B /\ B ~<_* C ) -> A ~<_* C ) |
12 |
6 11
|
impbida |
|- ( A ~~ B -> ( A ~<_* C <-> B ~<_* C ) ) |