| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
|- ( C ~<_* A -> C ~<_* A ) |
| 2 |
|
endom |
|- ( A ~~ B -> A ~<_ B ) |
| 3 |
|
domwdom |
|- ( A ~<_ B -> A ~<_* B ) |
| 4 |
2 3
|
syl |
|- ( A ~~ B -> A ~<_* B ) |
| 5 |
|
wdomtr |
|- ( ( C ~<_* A /\ A ~<_* B ) -> C ~<_* B ) |
| 6 |
1 4 5
|
syl2anr |
|- ( ( A ~~ B /\ C ~<_* A ) -> C ~<_* B ) |
| 7 |
|
id |
|- ( C ~<_* B -> C ~<_* B ) |
| 8 |
|
ensym |
|- ( A ~~ B -> B ~~ A ) |
| 9 |
|
endom |
|- ( B ~~ A -> B ~<_ A ) |
| 10 |
|
domwdom |
|- ( B ~<_ A -> B ~<_* A ) |
| 11 |
8 9 10
|
3syl |
|- ( A ~~ B -> B ~<_* A ) |
| 12 |
|
wdomtr |
|- ( ( C ~<_* B /\ B ~<_* A ) -> C ~<_* A ) |
| 13 |
7 11 12
|
syl2anr |
|- ( ( A ~~ B /\ C ~<_* B ) -> C ~<_* A ) |
| 14 |
6 13
|
impbida |
|- ( A ~~ B -> ( C ~<_* A <-> C ~<_* B ) ) |