Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( C ~<_* A -> C ~<_* A ) |
2 |
|
endom |
|- ( A ~~ B -> A ~<_ B ) |
3 |
|
domwdom |
|- ( A ~<_ B -> A ~<_* B ) |
4 |
2 3
|
syl |
|- ( A ~~ B -> A ~<_* B ) |
5 |
|
wdomtr |
|- ( ( C ~<_* A /\ A ~<_* B ) -> C ~<_* B ) |
6 |
1 4 5
|
syl2anr |
|- ( ( A ~~ B /\ C ~<_* A ) -> C ~<_* B ) |
7 |
|
id |
|- ( C ~<_* B -> C ~<_* B ) |
8 |
|
ensym |
|- ( A ~~ B -> B ~~ A ) |
9 |
|
endom |
|- ( B ~~ A -> B ~<_ A ) |
10 |
|
domwdom |
|- ( B ~<_ A -> B ~<_* A ) |
11 |
8 9 10
|
3syl |
|- ( A ~~ B -> B ~<_* A ) |
12 |
|
wdomtr |
|- ( ( C ~<_* B /\ B ~<_* A ) -> C ~<_* A ) |
13 |
7 11 12
|
syl2anr |
|- ( ( A ~~ B /\ C ~<_* B ) -> C ~<_* A ) |
14 |
6 13
|
impbida |
|- ( A ~~ B -> ( C ~<_* A <-> C ~<_* B ) ) |