Metamath Proof Explorer


Theorem wdompwdom

Description: Weak dominance strengthens to usual dominance on the power sets. (Contributed by Stefan O'Rear, 11-Feb-2015) (Revised by Mario Carneiro, 5-May-2015)

Ref Expression
Assertion wdompwdom
|- ( X ~<_* Y -> ~P X ~<_ ~P Y )

Proof

Step Hyp Ref Expression
1 relwdom
 |-  Rel ~<_*
2 1 brrelex2i
 |-  ( X ~<_* Y -> Y e. _V )
3 2 pwexd
 |-  ( X ~<_* Y -> ~P Y e. _V )
4 0ss
 |-  (/) C_ Y
5 4 sspwi
 |-  ~P (/) C_ ~P Y
6 ssdomg
 |-  ( ~P Y e. _V -> ( ~P (/) C_ ~P Y -> ~P (/) ~<_ ~P Y ) )
7 3 5 6 mpisyl
 |-  ( X ~<_* Y -> ~P (/) ~<_ ~P Y )
8 pweq
 |-  ( X = (/) -> ~P X = ~P (/) )
9 8 breq1d
 |-  ( X = (/) -> ( ~P X ~<_ ~P Y <-> ~P (/) ~<_ ~P Y ) )
10 7 9 syl5ibr
 |-  ( X = (/) -> ( X ~<_* Y -> ~P X ~<_ ~P Y ) )
11 brwdomn0
 |-  ( X =/= (/) -> ( X ~<_* Y <-> E. z z : Y -onto-> X ) )
12 vex
 |-  z e. _V
13 fopwdom
 |-  ( ( z e. _V /\ z : Y -onto-> X ) -> ~P X ~<_ ~P Y )
14 12 13 mpan
 |-  ( z : Y -onto-> X -> ~P X ~<_ ~P Y )
15 14 exlimiv
 |-  ( E. z z : Y -onto-> X -> ~P X ~<_ ~P Y )
16 11 15 syl6bi
 |-  ( X =/= (/) -> ( X ~<_* Y -> ~P X ~<_ ~P Y ) )
17 10 16 pm2.61ine
 |-  ( X ~<_* Y -> ~P X ~<_ ~P Y )