Step |
Hyp |
Ref |
Expression |
1 |
|
relwdom |
|- Rel ~<_* |
2 |
1
|
brrelex2i |
|- ( X ~<_* Y -> Y e. _V ) |
3 |
2
|
pwexd |
|- ( X ~<_* Y -> ~P Y e. _V ) |
4 |
|
0ss |
|- (/) C_ Y |
5 |
4
|
sspwi |
|- ~P (/) C_ ~P Y |
6 |
|
ssdomg |
|- ( ~P Y e. _V -> ( ~P (/) C_ ~P Y -> ~P (/) ~<_ ~P Y ) ) |
7 |
3 5 6
|
mpisyl |
|- ( X ~<_* Y -> ~P (/) ~<_ ~P Y ) |
8 |
|
pweq |
|- ( X = (/) -> ~P X = ~P (/) ) |
9 |
8
|
breq1d |
|- ( X = (/) -> ( ~P X ~<_ ~P Y <-> ~P (/) ~<_ ~P Y ) ) |
10 |
7 9
|
syl5ibr |
|- ( X = (/) -> ( X ~<_* Y -> ~P X ~<_ ~P Y ) ) |
11 |
|
brwdomn0 |
|- ( X =/= (/) -> ( X ~<_* Y <-> E. z z : Y -onto-> X ) ) |
12 |
|
vex |
|- z e. _V |
13 |
|
fopwdom |
|- ( ( z e. _V /\ z : Y -onto-> X ) -> ~P X ~<_ ~P Y ) |
14 |
12 13
|
mpan |
|- ( z : Y -onto-> X -> ~P X ~<_ ~P Y ) |
15 |
14
|
exlimiv |
|- ( E. z z : Y -onto-> X -> ~P X ~<_ ~P Y ) |
16 |
11 15
|
syl6bi |
|- ( X =/= (/) -> ( X ~<_* Y -> ~P X ~<_ ~P Y ) ) |
17 |
10 16
|
pm2.61ine |
|- ( X ~<_* Y -> ~P X ~<_ ~P Y ) |