| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relwdom |  |-  Rel ~<_* | 
						
							| 2 | 1 | brrelex2i |  |-  ( X ~<_* Y -> Y e. _V ) | 
						
							| 3 | 2 | pwexd |  |-  ( X ~<_* Y -> ~P Y e. _V ) | 
						
							| 4 |  | 0ss |  |-  (/) C_ Y | 
						
							| 5 | 4 | sspwi |  |-  ~P (/) C_ ~P Y | 
						
							| 6 |  | ssdomg |  |-  ( ~P Y e. _V -> ( ~P (/) C_ ~P Y -> ~P (/) ~<_ ~P Y ) ) | 
						
							| 7 | 3 5 6 | mpisyl |  |-  ( X ~<_* Y -> ~P (/) ~<_ ~P Y ) | 
						
							| 8 |  | pweq |  |-  ( X = (/) -> ~P X = ~P (/) ) | 
						
							| 9 | 8 | breq1d |  |-  ( X = (/) -> ( ~P X ~<_ ~P Y <-> ~P (/) ~<_ ~P Y ) ) | 
						
							| 10 | 7 9 | imbitrrid |  |-  ( X = (/) -> ( X ~<_* Y -> ~P X ~<_ ~P Y ) ) | 
						
							| 11 |  | brwdomn0 |  |-  ( X =/= (/) -> ( X ~<_* Y <-> E. z z : Y -onto-> X ) ) | 
						
							| 12 |  | vex |  |-  z e. _V | 
						
							| 13 |  | fopwdom |  |-  ( ( z e. _V /\ z : Y -onto-> X ) -> ~P X ~<_ ~P Y ) | 
						
							| 14 | 12 13 | mpan |  |-  ( z : Y -onto-> X -> ~P X ~<_ ~P Y ) | 
						
							| 15 | 14 | exlimiv |  |-  ( E. z z : Y -onto-> X -> ~P X ~<_ ~P Y ) | 
						
							| 16 | 11 15 | biimtrdi |  |-  ( X =/= (/) -> ( X ~<_* Y -> ~P X ~<_ ~P Y ) ) | 
						
							| 17 | 10 16 | pm2.61ine |  |-  ( X ~<_* Y -> ~P X ~<_ ~P Y ) |