Metamath Proof Explorer


Theorem wdomref

Description: Reflexivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015)

Ref Expression
Assertion wdomref
|- ( X e. V -> X ~<_* X )

Proof

Step Hyp Ref Expression
1 resiexg
 |-  ( X e. V -> ( _I |` X ) e. _V )
2 f1oi
 |-  ( _I |` X ) : X -1-1-onto-> X
3 f1ofo
 |-  ( ( _I |` X ) : X -1-1-onto-> X -> ( _I |` X ) : X -onto-> X )
4 2 3 ax-mp
 |-  ( _I |` X ) : X -onto-> X
5 fowdom
 |-  ( ( ( _I |` X ) e. _V /\ ( _I |` X ) : X -onto-> X ) -> X ~<_* X )
6 1 4 5 sylancl
 |-  ( X e. V -> X ~<_* X )