Step |
Hyp |
Ref |
Expression |
1 |
|
relwdom |
|- Rel ~<_* |
2 |
1
|
brrelex2i |
|- ( Y ~<_* Z -> Z e. _V ) |
3 |
2
|
adantl |
|- ( ( X ~<_* Y /\ Y ~<_* Z ) -> Z e. _V ) |
4 |
|
0wdom |
|- ( Z e. _V -> (/) ~<_* Z ) |
5 |
|
breq1 |
|- ( X = (/) -> ( X ~<_* Z <-> (/) ~<_* Z ) ) |
6 |
4 5
|
syl5ibrcom |
|- ( Z e. _V -> ( X = (/) -> X ~<_* Z ) ) |
7 |
3 6
|
syl |
|- ( ( X ~<_* Y /\ Y ~<_* Z ) -> ( X = (/) -> X ~<_* Z ) ) |
8 |
|
simpll |
|- ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) -> X ~<_* Y ) |
9 |
|
brwdomn0 |
|- ( X =/= (/) -> ( X ~<_* Y <-> E. z z : Y -onto-> X ) ) |
10 |
9
|
adantl |
|- ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) -> ( X ~<_* Y <-> E. z z : Y -onto-> X ) ) |
11 |
8 10
|
mpbid |
|- ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) -> E. z z : Y -onto-> X ) |
12 |
|
simpllr |
|- ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ z : Y -onto-> X ) -> Y ~<_* Z ) |
13 |
|
simplr |
|- ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ z : Y -onto-> X ) -> X =/= (/) ) |
14 |
|
dm0rn0 |
|- ( dom z = (/) <-> ran z = (/) ) |
15 |
14
|
necon3bii |
|- ( dom z =/= (/) <-> ran z =/= (/) ) |
16 |
15
|
a1i |
|- ( z : Y -onto-> X -> ( dom z =/= (/) <-> ran z =/= (/) ) ) |
17 |
|
fof |
|- ( z : Y -onto-> X -> z : Y --> X ) |
18 |
17
|
fdmd |
|- ( z : Y -onto-> X -> dom z = Y ) |
19 |
18
|
neeq1d |
|- ( z : Y -onto-> X -> ( dom z =/= (/) <-> Y =/= (/) ) ) |
20 |
|
forn |
|- ( z : Y -onto-> X -> ran z = X ) |
21 |
20
|
neeq1d |
|- ( z : Y -onto-> X -> ( ran z =/= (/) <-> X =/= (/) ) ) |
22 |
16 19 21
|
3bitr3rd |
|- ( z : Y -onto-> X -> ( X =/= (/) <-> Y =/= (/) ) ) |
23 |
22
|
adantl |
|- ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ z : Y -onto-> X ) -> ( X =/= (/) <-> Y =/= (/) ) ) |
24 |
13 23
|
mpbid |
|- ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ z : Y -onto-> X ) -> Y =/= (/) ) |
25 |
|
brwdomn0 |
|- ( Y =/= (/) -> ( Y ~<_* Z <-> E. y y : Z -onto-> Y ) ) |
26 |
24 25
|
syl |
|- ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ z : Y -onto-> X ) -> ( Y ~<_* Z <-> E. y y : Z -onto-> Y ) ) |
27 |
12 26
|
mpbid |
|- ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ z : Y -onto-> X ) -> E. y y : Z -onto-> Y ) |
28 |
|
vex |
|- z e. _V |
29 |
|
vex |
|- y e. _V |
30 |
28 29
|
coex |
|- ( z o. y ) e. _V |
31 |
|
foco |
|- ( ( z : Y -onto-> X /\ y : Z -onto-> Y ) -> ( z o. y ) : Z -onto-> X ) |
32 |
|
fowdom |
|- ( ( ( z o. y ) e. _V /\ ( z o. y ) : Z -onto-> X ) -> X ~<_* Z ) |
33 |
30 31 32
|
sylancr |
|- ( ( z : Y -onto-> X /\ y : Z -onto-> Y ) -> X ~<_* Z ) |
34 |
33
|
adantl |
|- ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ ( z : Y -onto-> X /\ y : Z -onto-> Y ) ) -> X ~<_* Z ) |
35 |
34
|
expr |
|- ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ z : Y -onto-> X ) -> ( y : Z -onto-> Y -> X ~<_* Z ) ) |
36 |
35
|
exlimdv |
|- ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ z : Y -onto-> X ) -> ( E. y y : Z -onto-> Y -> X ~<_* Z ) ) |
37 |
27 36
|
mpd |
|- ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ z : Y -onto-> X ) -> X ~<_* Z ) |
38 |
11 37
|
exlimddv |
|- ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) -> X ~<_* Z ) |
39 |
38
|
ex |
|- ( ( X ~<_* Y /\ Y ~<_* Z ) -> ( X =/= (/) -> X ~<_* Z ) ) |
40 |
7 39
|
pm2.61dne |
|- ( ( X ~<_* Y /\ Y ~<_* Z ) -> X ~<_* Z ) |