| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relwdom |  |-  Rel ~<_* | 
						
							| 2 | 1 | brrelex2i |  |-  ( Y ~<_* Z -> Z e. _V ) | 
						
							| 3 | 2 | adantl |  |-  ( ( X ~<_* Y /\ Y ~<_* Z ) -> Z e. _V ) | 
						
							| 4 |  | 0wdom |  |-  ( Z e. _V -> (/) ~<_* Z ) | 
						
							| 5 |  | breq1 |  |-  ( X = (/) -> ( X ~<_* Z <-> (/) ~<_* Z ) ) | 
						
							| 6 | 4 5 | syl5ibrcom |  |-  ( Z e. _V -> ( X = (/) -> X ~<_* Z ) ) | 
						
							| 7 | 3 6 | syl |  |-  ( ( X ~<_* Y /\ Y ~<_* Z ) -> ( X = (/) -> X ~<_* Z ) ) | 
						
							| 8 |  | simpll |  |-  ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) -> X ~<_* Y ) | 
						
							| 9 |  | brwdomn0 |  |-  ( X =/= (/) -> ( X ~<_* Y <-> E. z z : Y -onto-> X ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) -> ( X ~<_* Y <-> E. z z : Y -onto-> X ) ) | 
						
							| 11 | 8 10 | mpbid |  |-  ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) -> E. z z : Y -onto-> X ) | 
						
							| 12 |  | simpllr |  |-  ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ z : Y -onto-> X ) -> Y ~<_* Z ) | 
						
							| 13 |  | simplr |  |-  ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ z : Y -onto-> X ) -> X =/= (/) ) | 
						
							| 14 |  | dm0rn0 |  |-  ( dom z = (/) <-> ran z = (/) ) | 
						
							| 15 | 14 | necon3bii |  |-  ( dom z =/= (/) <-> ran z =/= (/) ) | 
						
							| 16 | 15 | a1i |  |-  ( z : Y -onto-> X -> ( dom z =/= (/) <-> ran z =/= (/) ) ) | 
						
							| 17 |  | fof |  |-  ( z : Y -onto-> X -> z : Y --> X ) | 
						
							| 18 | 17 | fdmd |  |-  ( z : Y -onto-> X -> dom z = Y ) | 
						
							| 19 | 18 | neeq1d |  |-  ( z : Y -onto-> X -> ( dom z =/= (/) <-> Y =/= (/) ) ) | 
						
							| 20 |  | forn |  |-  ( z : Y -onto-> X -> ran z = X ) | 
						
							| 21 | 20 | neeq1d |  |-  ( z : Y -onto-> X -> ( ran z =/= (/) <-> X =/= (/) ) ) | 
						
							| 22 | 16 19 21 | 3bitr3rd |  |-  ( z : Y -onto-> X -> ( X =/= (/) <-> Y =/= (/) ) ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ z : Y -onto-> X ) -> ( X =/= (/) <-> Y =/= (/) ) ) | 
						
							| 24 | 13 23 | mpbid |  |-  ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ z : Y -onto-> X ) -> Y =/= (/) ) | 
						
							| 25 |  | brwdomn0 |  |-  ( Y =/= (/) -> ( Y ~<_* Z <-> E. y y : Z -onto-> Y ) ) | 
						
							| 26 | 24 25 | syl |  |-  ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ z : Y -onto-> X ) -> ( Y ~<_* Z <-> E. y y : Z -onto-> Y ) ) | 
						
							| 27 | 12 26 | mpbid |  |-  ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ z : Y -onto-> X ) -> E. y y : Z -onto-> Y ) | 
						
							| 28 |  | vex |  |-  z e. _V | 
						
							| 29 |  | vex |  |-  y e. _V | 
						
							| 30 | 28 29 | coex |  |-  ( z o. y ) e. _V | 
						
							| 31 |  | foco |  |-  ( ( z : Y -onto-> X /\ y : Z -onto-> Y ) -> ( z o. y ) : Z -onto-> X ) | 
						
							| 32 |  | fowdom |  |-  ( ( ( z o. y ) e. _V /\ ( z o. y ) : Z -onto-> X ) -> X ~<_* Z ) | 
						
							| 33 | 30 31 32 | sylancr |  |-  ( ( z : Y -onto-> X /\ y : Z -onto-> Y ) -> X ~<_* Z ) | 
						
							| 34 | 33 | adantl |  |-  ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ ( z : Y -onto-> X /\ y : Z -onto-> Y ) ) -> X ~<_* Z ) | 
						
							| 35 | 34 | expr |  |-  ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ z : Y -onto-> X ) -> ( y : Z -onto-> Y -> X ~<_* Z ) ) | 
						
							| 36 | 35 | exlimdv |  |-  ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ z : Y -onto-> X ) -> ( E. y y : Z -onto-> Y -> X ~<_* Z ) ) | 
						
							| 37 | 27 36 | mpd |  |-  ( ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) /\ z : Y -onto-> X ) -> X ~<_* Z ) | 
						
							| 38 | 11 37 | exlimddv |  |-  ( ( ( X ~<_* Y /\ Y ~<_* Z ) /\ X =/= (/) ) -> X ~<_* Z ) | 
						
							| 39 | 38 | ex |  |-  ( ( X ~<_* Y /\ Y ~<_* Z ) -> ( X =/= (/) -> X ~<_* Z ) ) | 
						
							| 40 | 7 39 | pm2.61dne |  |-  ( ( X ~<_* Y /\ Y ~<_* Z ) -> X ~<_* Z ) |