Description: The elements of a class well-ordered by membership are comparable. (Contributed by NM, 17-May-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | wecmpep | |- ( ( _E We A /\ ( x e. A /\ y e. A ) ) -> ( x e. y \/ x = y \/ y e. x ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | weso | |- ( _E We A -> _E Or A ) |
|
2 | solin | |- ( ( _E Or A /\ ( x e. A /\ y e. A ) ) -> ( x _E y \/ x = y \/ y _E x ) ) |
|
3 | epel | |- ( x _E y <-> x e. y ) |
|
4 | biid | |- ( x = y <-> x = y ) |
|
5 | epel | |- ( y _E x <-> y e. x ) |
|
6 | 3 4 5 | 3orbi123i | |- ( ( x _E y \/ x = y \/ y _E x ) <-> ( x e. y \/ x = y \/ y e. x ) ) |
7 | 2 6 | sylib | |- ( ( _E Or A /\ ( x e. A /\ y e. A ) ) -> ( x e. y \/ x = y \/ y e. x ) ) |
8 | 1 7 | sylan | |- ( ( _E We A /\ ( x e. A /\ y e. A ) ) -> ( x e. y \/ x = y \/ y e. x ) ) |