Step |
Hyp |
Ref |
Expression |
1 |
|
dfac8b |
|- ( A e. dom card -> E. r r We A ) |
2 |
|
weso |
|- ( r We A -> r Or A ) |
3 |
|
vex |
|- r e. _V |
4 |
|
soex |
|- ( ( r Or A /\ r e. _V ) -> A e. _V ) |
5 |
2 3 4
|
sylancl |
|- ( r We A -> A e. _V ) |
6 |
5
|
exlimiv |
|- ( E. r r We A -> A e. _V ) |
7 |
|
unipw |
|- U. ~P A = A |
8 |
|
weeq2 |
|- ( U. ~P A = A -> ( r We U. ~P A <-> r We A ) ) |
9 |
7 8
|
ax-mp |
|- ( r We U. ~P A <-> r We A ) |
10 |
9
|
exbii |
|- ( E. r r We U. ~P A <-> E. r r We A ) |
11 |
10
|
biimpri |
|- ( E. r r We A -> E. r r We U. ~P A ) |
12 |
|
pwexg |
|- ( A e. _V -> ~P A e. _V ) |
13 |
|
dfac8c |
|- ( ~P A e. _V -> ( E. r r We U. ~P A -> E. f A. x e. ~P A ( x =/= (/) -> ( f ` x ) e. x ) ) ) |
14 |
12 13
|
syl |
|- ( A e. _V -> ( E. r r We U. ~P A -> E. f A. x e. ~P A ( x =/= (/) -> ( f ` x ) e. x ) ) ) |
15 |
|
dfac8a |
|- ( A e. _V -> ( E. f A. x e. ~P A ( x =/= (/) -> ( f ` x ) e. x ) -> A e. dom card ) ) |
16 |
14 15
|
syld |
|- ( A e. _V -> ( E. r r We U. ~P A -> A e. dom card ) ) |
17 |
6 11 16
|
sylc |
|- ( E. r r We A -> A e. dom card ) |
18 |
1 17
|
impbii |
|- ( A e. dom card <-> E. r r We A ) |