Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 9-Mar-1997)
Ref | Expression | ||
---|---|---|---|
Assertion | weeq1 | |- ( R = S -> ( R We A <-> S We A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | freq1 | |- ( R = S -> ( R Fr A <-> S Fr A ) ) |
|
2 | soeq1 | |- ( R = S -> ( R Or A <-> S Or A ) ) |
|
3 | 1 2 | anbi12d | |- ( R = S -> ( ( R Fr A /\ R Or A ) <-> ( S Fr A /\ S Or A ) ) ) |
4 | df-we | |- ( R We A <-> ( R Fr A /\ R Or A ) ) |
|
5 | df-we | |- ( S We A <-> ( S Fr A /\ S Or A ) ) |
|
6 | 3 4 5 | 3bitr4g | |- ( R = S -> ( R We A <-> S We A ) ) |