Description: Equality deduction for well-orders. (Contributed by Stefan O'Rear, 19-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | weeq12d.l | |- ( ph -> R = S ) |
|
weeq12d.r | |- ( ph -> A = B ) |
||
Assertion | weeq12d | |- ( ph -> ( R We A <-> S We B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | weeq12d.l | |- ( ph -> R = S ) |
|
2 | weeq12d.r | |- ( ph -> A = B ) |
|
3 | weeq1 | |- ( R = S -> ( R We A <-> S We A ) ) |
|
4 | 1 3 | syl | |- ( ph -> ( R We A <-> S We A ) ) |
5 | weeq2 | |- ( A = B -> ( S We A <-> S We B ) ) |
|
6 | 2 5 | syl | |- ( ph -> ( S We A <-> S We B ) ) |
7 | 4 6 | bitrd | |- ( ph -> ( R We A <-> S We B ) ) |