Description: Equality theorem for the well-ordering predicate. (Contributed by NM, 3-Apr-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | weeq2 | |- ( A = B -> ( R We A <-> R We B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | freq2 | |- ( A = B -> ( R Fr A <-> R Fr B ) ) |
|
| 2 | soeq2 | |- ( A = B -> ( R Or A <-> R Or B ) ) |
|
| 3 | 1 2 | anbi12d | |- ( A = B -> ( ( R Fr A /\ R Or A ) <-> ( R Fr B /\ R Or B ) ) ) |
| 4 | df-we | |- ( R We A <-> ( R Fr A /\ R Or A ) ) |
|
| 5 | df-we | |- ( R We B <-> ( R Fr B /\ R Or B ) ) |
|
| 6 | 3 4 5 | 3bitr4g | |- ( A = B -> ( R We A <-> R We B ) ) |