Metamath Proof Explorer


Theorem weinxp

Description: Intersection of well-ordering with Cartesian product of its field. (Contributed by NM, 9-Mar-1997) (Revised by Mario Carneiro, 10-Jul-2014)

Ref Expression
Assertion weinxp
|- ( R We A <-> ( R i^i ( A X. A ) ) We A )

Proof

Step Hyp Ref Expression
1 frinxp
 |-  ( R Fr A <-> ( R i^i ( A X. A ) ) Fr A )
2 soinxp
 |-  ( R Or A <-> ( R i^i ( A X. A ) ) Or A )
3 1 2 anbi12i
 |-  ( ( R Fr A /\ R Or A ) <-> ( ( R i^i ( A X. A ) ) Fr A /\ ( R i^i ( A X. A ) ) Or A ) )
4 df-we
 |-  ( R We A <-> ( R Fr A /\ R Or A ) )
5 df-we
 |-  ( ( R i^i ( A X. A ) ) We A <-> ( ( R i^i ( A X. A ) ) Fr A /\ ( R i^i ( A X. A ) ) Or A ) )
6 3 4 5 3bitr4i
 |-  ( R We A <-> ( R i^i ( A X. A ) ) We A )