Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( G Isom R , S ( A , B ) -> G Isom R , S ( A , B ) ) |
2 |
|
isocnv |
|- ( F Isom R , S ( A , B ) -> `' F Isom S , R ( B , A ) ) |
3 |
|
isotr |
|- ( ( G Isom R , S ( A , B ) /\ `' F Isom S , R ( B , A ) ) -> ( `' F o. G ) Isom R , R ( A , A ) ) |
4 |
1 2 3
|
syl2anr |
|- ( ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) -> ( `' F o. G ) Isom R , R ( A , A ) ) |
5 |
|
weniso |
|- ( ( R We A /\ R Se A /\ ( `' F o. G ) Isom R , R ( A , A ) ) -> ( `' F o. G ) = ( _I |` A ) ) |
6 |
5
|
3expa |
|- ( ( ( R We A /\ R Se A ) /\ ( `' F o. G ) Isom R , R ( A , A ) ) -> ( `' F o. G ) = ( _I |` A ) ) |
7 |
4 6
|
sylan2 |
|- ( ( ( R We A /\ R Se A ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> ( `' F o. G ) = ( _I |` A ) ) |
8 |
|
simprl |
|- ( ( ( R We A /\ R Se A ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> F Isom R , S ( A , B ) ) |
9 |
|
isof1o |
|- ( F Isom R , S ( A , B ) -> F : A -1-1-onto-> B ) |
10 |
|
f1of1 |
|- ( F : A -1-1-onto-> B -> F : A -1-1-> B ) |
11 |
8 9 10
|
3syl |
|- ( ( ( R We A /\ R Se A ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> F : A -1-1-> B ) |
12 |
|
simprr |
|- ( ( ( R We A /\ R Se A ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> G Isom R , S ( A , B ) ) |
13 |
|
isof1o |
|- ( G Isom R , S ( A , B ) -> G : A -1-1-onto-> B ) |
14 |
|
f1of1 |
|- ( G : A -1-1-onto-> B -> G : A -1-1-> B ) |
15 |
12 13 14
|
3syl |
|- ( ( ( R We A /\ R Se A ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> G : A -1-1-> B ) |
16 |
|
f1eqcocnv |
|- ( ( F : A -1-1-> B /\ G : A -1-1-> B ) -> ( F = G <-> ( `' F o. G ) = ( _I |` A ) ) ) |
17 |
11 15 16
|
syl2anc |
|- ( ( ( R We A /\ R Se A ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> ( F = G <-> ( `' F o. G ) = ( _I |` A ) ) ) |
18 |
7 17
|
mpbird |
|- ( ( ( R We A /\ R Se A ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> F = G ) |