Step |
Hyp |
Ref |
Expression |
1 |
|
isocnv |
|- ( F Isom R , S ( A , B ) -> `' F Isom S , R ( B , A ) ) |
2 |
|
isocnv |
|- ( G Isom R , S ( A , B ) -> `' G Isom S , R ( B , A ) ) |
3 |
1 2
|
anim12i |
|- ( ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) -> ( `' F Isom S , R ( B , A ) /\ `' G Isom S , R ( B , A ) ) ) |
4 |
|
weisoeq |
|- ( ( ( S We B /\ S Se B ) /\ ( `' F Isom S , R ( B , A ) /\ `' G Isom S , R ( B , A ) ) ) -> `' F = `' G ) |
5 |
3 4
|
sylan2 |
|- ( ( ( S We B /\ S Se B ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> `' F = `' G ) |
6 |
|
simprl |
|- ( ( ( S We B /\ S Se B ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> F Isom R , S ( A , B ) ) |
7 |
|
isof1o |
|- ( F Isom R , S ( A , B ) -> F : A -1-1-onto-> B ) |
8 |
|
f1orel |
|- ( F : A -1-1-onto-> B -> Rel F ) |
9 |
6 7 8
|
3syl |
|- ( ( ( S We B /\ S Se B ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> Rel F ) |
10 |
|
simprr |
|- ( ( ( S We B /\ S Se B ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> G Isom R , S ( A , B ) ) |
11 |
|
isof1o |
|- ( G Isom R , S ( A , B ) -> G : A -1-1-onto-> B ) |
12 |
|
f1orel |
|- ( G : A -1-1-onto-> B -> Rel G ) |
13 |
10 11 12
|
3syl |
|- ( ( ( S We B /\ S Se B ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> Rel G ) |
14 |
|
cnveqb |
|- ( ( Rel F /\ Rel G ) -> ( F = G <-> `' F = `' G ) ) |
15 |
9 13 14
|
syl2anc |
|- ( ( ( S We B /\ S Se B ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> ( F = G <-> `' F = `' G ) ) |
16 |
5 15
|
mpbird |
|- ( ( ( S We B /\ S Se B ) /\ ( F Isom R , S ( A , B ) /\ G Isom R , S ( A , B ) ) ) -> F = G ) |