Step |
Hyp |
Ref |
Expression |
1 |
|
wemapso.t |
|- T = { <. x , y >. | E. z e. A ( ( x ` z ) S ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } |
2 |
|
fveq1 |
|- ( x = P -> ( x ` z ) = ( P ` z ) ) |
3 |
|
fveq1 |
|- ( y = Q -> ( y ` z ) = ( Q ` z ) ) |
4 |
2 3
|
breqan12d |
|- ( ( x = P /\ y = Q ) -> ( ( x ` z ) S ( y ` z ) <-> ( P ` z ) S ( Q ` z ) ) ) |
5 |
|
fveq1 |
|- ( x = P -> ( x ` w ) = ( P ` w ) ) |
6 |
|
fveq1 |
|- ( y = Q -> ( y ` w ) = ( Q ` w ) ) |
7 |
5 6
|
eqeqan12d |
|- ( ( x = P /\ y = Q ) -> ( ( x ` w ) = ( y ` w ) <-> ( P ` w ) = ( Q ` w ) ) ) |
8 |
7
|
imbi2d |
|- ( ( x = P /\ y = Q ) -> ( ( w R z -> ( x ` w ) = ( y ` w ) ) <-> ( w R z -> ( P ` w ) = ( Q ` w ) ) ) ) |
9 |
8
|
ralbidv |
|- ( ( x = P /\ y = Q ) -> ( A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) <-> A. w e. A ( w R z -> ( P ` w ) = ( Q ` w ) ) ) ) |
10 |
4 9
|
anbi12d |
|- ( ( x = P /\ y = Q ) -> ( ( ( x ` z ) S ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) <-> ( ( P ` z ) S ( Q ` z ) /\ A. w e. A ( w R z -> ( P ` w ) = ( Q ` w ) ) ) ) ) |
11 |
10
|
rexbidv |
|- ( ( x = P /\ y = Q ) -> ( E. z e. A ( ( x ` z ) S ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) <-> E. z e. A ( ( P ` z ) S ( Q ` z ) /\ A. w e. A ( w R z -> ( P ` w ) = ( Q ` w ) ) ) ) ) |
12 |
|
fveq2 |
|- ( z = a -> ( P ` z ) = ( P ` a ) ) |
13 |
|
fveq2 |
|- ( z = a -> ( Q ` z ) = ( Q ` a ) ) |
14 |
12 13
|
breq12d |
|- ( z = a -> ( ( P ` z ) S ( Q ` z ) <-> ( P ` a ) S ( Q ` a ) ) ) |
15 |
|
breq2 |
|- ( z = a -> ( w R z <-> w R a ) ) |
16 |
15
|
imbi1d |
|- ( z = a -> ( ( w R z -> ( P ` w ) = ( Q ` w ) ) <-> ( w R a -> ( P ` w ) = ( Q ` w ) ) ) ) |
17 |
16
|
ralbidv |
|- ( z = a -> ( A. w e. A ( w R z -> ( P ` w ) = ( Q ` w ) ) <-> A. w e. A ( w R a -> ( P ` w ) = ( Q ` w ) ) ) ) |
18 |
|
breq1 |
|- ( w = b -> ( w R a <-> b R a ) ) |
19 |
|
fveq2 |
|- ( w = b -> ( P ` w ) = ( P ` b ) ) |
20 |
|
fveq2 |
|- ( w = b -> ( Q ` w ) = ( Q ` b ) ) |
21 |
19 20
|
eqeq12d |
|- ( w = b -> ( ( P ` w ) = ( Q ` w ) <-> ( P ` b ) = ( Q ` b ) ) ) |
22 |
18 21
|
imbi12d |
|- ( w = b -> ( ( w R a -> ( P ` w ) = ( Q ` w ) ) <-> ( b R a -> ( P ` b ) = ( Q ` b ) ) ) ) |
23 |
22
|
cbvralvw |
|- ( A. w e. A ( w R a -> ( P ` w ) = ( Q ` w ) ) <-> A. b e. A ( b R a -> ( P ` b ) = ( Q ` b ) ) ) |
24 |
17 23
|
bitrdi |
|- ( z = a -> ( A. w e. A ( w R z -> ( P ` w ) = ( Q ` w ) ) <-> A. b e. A ( b R a -> ( P ` b ) = ( Q ` b ) ) ) ) |
25 |
14 24
|
anbi12d |
|- ( z = a -> ( ( ( P ` z ) S ( Q ` z ) /\ A. w e. A ( w R z -> ( P ` w ) = ( Q ` w ) ) ) <-> ( ( P ` a ) S ( Q ` a ) /\ A. b e. A ( b R a -> ( P ` b ) = ( Q ` b ) ) ) ) ) |
26 |
25
|
cbvrexvw |
|- ( E. z e. A ( ( P ` z ) S ( Q ` z ) /\ A. w e. A ( w R z -> ( P ` w ) = ( Q ` w ) ) ) <-> E. a e. A ( ( P ` a ) S ( Q ` a ) /\ A. b e. A ( b R a -> ( P ` b ) = ( Q ` b ) ) ) ) |
27 |
11 26
|
bitrdi |
|- ( ( x = P /\ y = Q ) -> ( E. z e. A ( ( x ` z ) S ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) <-> E. a e. A ( ( P ` a ) S ( Q ` a ) /\ A. b e. A ( b R a -> ( P ` b ) = ( Q ` b ) ) ) ) ) |
28 |
27 1
|
brabga |
|- ( ( P e. V /\ Q e. W ) -> ( P T Q <-> E. a e. A ( ( P ` a ) S ( Q ` a ) /\ A. b e. A ( b R a -> ( P ` b ) = ( Q ` b ) ) ) ) ) |