| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wemapso.t |  |-  T = { <. x , y >. | E. z e. A ( ( x ` z ) S ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } | 
						
							| 2 |  | wemaplem2.p |  |-  ( ph -> P e. ( B ^m A ) ) | 
						
							| 3 |  | wemaplem2.x |  |-  ( ph -> X e. ( B ^m A ) ) | 
						
							| 4 |  | wemaplem2.q |  |-  ( ph -> Q e. ( B ^m A ) ) | 
						
							| 5 |  | wemaplem2.r |  |-  ( ph -> R Or A ) | 
						
							| 6 |  | wemaplem2.s |  |-  ( ph -> S Po B ) | 
						
							| 7 |  | wemaplem2.px1 |  |-  ( ph -> a e. A ) | 
						
							| 8 |  | wemaplem2.px2 |  |-  ( ph -> ( P ` a ) S ( X ` a ) ) | 
						
							| 9 |  | wemaplem2.px3 |  |-  ( ph -> A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) | 
						
							| 10 |  | wemaplem2.xq1 |  |-  ( ph -> b e. A ) | 
						
							| 11 |  | wemaplem2.xq2 |  |-  ( ph -> ( X ` b ) S ( Q ` b ) ) | 
						
							| 12 |  | wemaplem2.xq3 |  |-  ( ph -> A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) | 
						
							| 13 | 7 10 | ifcld |  |-  ( ph -> if ( a R b , a , b ) e. A ) | 
						
							| 14 | 8 | adantr |  |-  ( ( ph /\ a R b ) -> ( P ` a ) S ( X ` a ) ) | 
						
							| 15 |  | breq1 |  |-  ( c = a -> ( c R b <-> a R b ) ) | 
						
							| 16 |  | fveq2 |  |-  ( c = a -> ( X ` c ) = ( X ` a ) ) | 
						
							| 17 |  | fveq2 |  |-  ( c = a -> ( Q ` c ) = ( Q ` a ) ) | 
						
							| 18 | 16 17 | eqeq12d |  |-  ( c = a -> ( ( X ` c ) = ( Q ` c ) <-> ( X ` a ) = ( Q ` a ) ) ) | 
						
							| 19 | 15 18 | imbi12d |  |-  ( c = a -> ( ( c R b -> ( X ` c ) = ( Q ` c ) ) <-> ( a R b -> ( X ` a ) = ( Q ` a ) ) ) ) | 
						
							| 20 | 19 12 7 | rspcdva |  |-  ( ph -> ( a R b -> ( X ` a ) = ( Q ` a ) ) ) | 
						
							| 21 | 20 | imp |  |-  ( ( ph /\ a R b ) -> ( X ` a ) = ( Q ` a ) ) | 
						
							| 22 | 14 21 | breqtrd |  |-  ( ( ph /\ a R b ) -> ( P ` a ) S ( Q ` a ) ) | 
						
							| 23 |  | iftrue |  |-  ( a R b -> if ( a R b , a , b ) = a ) | 
						
							| 24 | 23 | fveq2d |  |-  ( a R b -> ( P ` if ( a R b , a , b ) ) = ( P ` a ) ) | 
						
							| 25 | 23 | fveq2d |  |-  ( a R b -> ( Q ` if ( a R b , a , b ) ) = ( Q ` a ) ) | 
						
							| 26 | 24 25 | breq12d |  |-  ( a R b -> ( ( P ` if ( a R b , a , b ) ) S ( Q ` if ( a R b , a , b ) ) <-> ( P ` a ) S ( Q ` a ) ) ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ph /\ a R b ) -> ( ( P ` if ( a R b , a , b ) ) S ( Q ` if ( a R b , a , b ) ) <-> ( P ` a ) S ( Q ` a ) ) ) | 
						
							| 28 | 22 27 | mpbird |  |-  ( ( ph /\ a R b ) -> ( P ` if ( a R b , a , b ) ) S ( Q ` if ( a R b , a , b ) ) ) | 
						
							| 29 | 6 | adantr |  |-  ( ( ph /\ a = b ) -> S Po B ) | 
						
							| 30 |  | elmapi |  |-  ( P e. ( B ^m A ) -> P : A --> B ) | 
						
							| 31 | 2 30 | syl |  |-  ( ph -> P : A --> B ) | 
						
							| 32 | 31 10 | ffvelcdmd |  |-  ( ph -> ( P ` b ) e. B ) | 
						
							| 33 |  | elmapi |  |-  ( X e. ( B ^m A ) -> X : A --> B ) | 
						
							| 34 | 3 33 | syl |  |-  ( ph -> X : A --> B ) | 
						
							| 35 | 34 10 | ffvelcdmd |  |-  ( ph -> ( X ` b ) e. B ) | 
						
							| 36 |  | elmapi |  |-  ( Q e. ( B ^m A ) -> Q : A --> B ) | 
						
							| 37 | 4 36 | syl |  |-  ( ph -> Q : A --> B ) | 
						
							| 38 | 37 10 | ffvelcdmd |  |-  ( ph -> ( Q ` b ) e. B ) | 
						
							| 39 | 32 35 38 | 3jca |  |-  ( ph -> ( ( P ` b ) e. B /\ ( X ` b ) e. B /\ ( Q ` b ) e. B ) ) | 
						
							| 40 | 39 | adantr |  |-  ( ( ph /\ a = b ) -> ( ( P ` b ) e. B /\ ( X ` b ) e. B /\ ( Q ` b ) e. B ) ) | 
						
							| 41 |  | fveq2 |  |-  ( a = b -> ( P ` a ) = ( P ` b ) ) | 
						
							| 42 |  | fveq2 |  |-  ( a = b -> ( X ` a ) = ( X ` b ) ) | 
						
							| 43 | 41 42 | breq12d |  |-  ( a = b -> ( ( P ` a ) S ( X ` a ) <-> ( P ` b ) S ( X ` b ) ) ) | 
						
							| 44 | 8 43 | syl5ibcom |  |-  ( ph -> ( a = b -> ( P ` b ) S ( X ` b ) ) ) | 
						
							| 45 | 44 | imp |  |-  ( ( ph /\ a = b ) -> ( P ` b ) S ( X ` b ) ) | 
						
							| 46 | 11 | adantr |  |-  ( ( ph /\ a = b ) -> ( X ` b ) S ( Q ` b ) ) | 
						
							| 47 |  | potr |  |-  ( ( S Po B /\ ( ( P ` b ) e. B /\ ( X ` b ) e. B /\ ( Q ` b ) e. B ) ) -> ( ( ( P ` b ) S ( X ` b ) /\ ( X ` b ) S ( Q ` b ) ) -> ( P ` b ) S ( Q ` b ) ) ) | 
						
							| 48 | 47 | imp |  |-  ( ( ( S Po B /\ ( ( P ` b ) e. B /\ ( X ` b ) e. B /\ ( Q ` b ) e. B ) ) /\ ( ( P ` b ) S ( X ` b ) /\ ( X ` b ) S ( Q ` b ) ) ) -> ( P ` b ) S ( Q ` b ) ) | 
						
							| 49 | 29 40 45 46 48 | syl22anc |  |-  ( ( ph /\ a = b ) -> ( P ` b ) S ( Q ` b ) ) | 
						
							| 50 |  | ifeq1 |  |-  ( a = b -> if ( a R b , a , b ) = if ( a R b , b , b ) ) | 
						
							| 51 |  | ifid |  |-  if ( a R b , b , b ) = b | 
						
							| 52 | 50 51 | eqtrdi |  |-  ( a = b -> if ( a R b , a , b ) = b ) | 
						
							| 53 | 52 | fveq2d |  |-  ( a = b -> ( P ` if ( a R b , a , b ) ) = ( P ` b ) ) | 
						
							| 54 | 52 | fveq2d |  |-  ( a = b -> ( Q ` if ( a R b , a , b ) ) = ( Q ` b ) ) | 
						
							| 55 | 53 54 | breq12d |  |-  ( a = b -> ( ( P ` if ( a R b , a , b ) ) S ( Q ` if ( a R b , a , b ) ) <-> ( P ` b ) S ( Q ` b ) ) ) | 
						
							| 56 | 55 | adantl |  |-  ( ( ph /\ a = b ) -> ( ( P ` if ( a R b , a , b ) ) S ( Q ` if ( a R b , a , b ) ) <-> ( P ` b ) S ( Q ` b ) ) ) | 
						
							| 57 | 49 56 | mpbird |  |-  ( ( ph /\ a = b ) -> ( P ` if ( a R b , a , b ) ) S ( Q ` if ( a R b , a , b ) ) ) | 
						
							| 58 |  | breq1 |  |-  ( c = b -> ( c R a <-> b R a ) ) | 
						
							| 59 |  | fveq2 |  |-  ( c = b -> ( P ` c ) = ( P ` b ) ) | 
						
							| 60 |  | fveq2 |  |-  ( c = b -> ( X ` c ) = ( X ` b ) ) | 
						
							| 61 | 59 60 | eqeq12d |  |-  ( c = b -> ( ( P ` c ) = ( X ` c ) <-> ( P ` b ) = ( X ` b ) ) ) | 
						
							| 62 | 58 61 | imbi12d |  |-  ( c = b -> ( ( c R a -> ( P ` c ) = ( X ` c ) ) <-> ( b R a -> ( P ` b ) = ( X ` b ) ) ) ) | 
						
							| 63 | 62 9 10 | rspcdva |  |-  ( ph -> ( b R a -> ( P ` b ) = ( X ` b ) ) ) | 
						
							| 64 | 63 | imp |  |-  ( ( ph /\ b R a ) -> ( P ` b ) = ( X ` b ) ) | 
						
							| 65 | 11 | adantr |  |-  ( ( ph /\ b R a ) -> ( X ` b ) S ( Q ` b ) ) | 
						
							| 66 | 64 65 | eqbrtrd |  |-  ( ( ph /\ b R a ) -> ( P ` b ) S ( Q ` b ) ) | 
						
							| 67 |  | sopo |  |-  ( R Or A -> R Po A ) | 
						
							| 68 | 5 67 | syl |  |-  ( ph -> R Po A ) | 
						
							| 69 |  | po2nr |  |-  ( ( R Po A /\ ( b e. A /\ a e. A ) ) -> -. ( b R a /\ a R b ) ) | 
						
							| 70 | 68 10 7 69 | syl12anc |  |-  ( ph -> -. ( b R a /\ a R b ) ) | 
						
							| 71 |  | nan |  |-  ( ( ph -> -. ( b R a /\ a R b ) ) <-> ( ( ph /\ b R a ) -> -. a R b ) ) | 
						
							| 72 | 70 71 | mpbi |  |-  ( ( ph /\ b R a ) -> -. a R b ) | 
						
							| 73 |  | iffalse |  |-  ( -. a R b -> if ( a R b , a , b ) = b ) | 
						
							| 74 | 73 | fveq2d |  |-  ( -. a R b -> ( P ` if ( a R b , a , b ) ) = ( P ` b ) ) | 
						
							| 75 | 73 | fveq2d |  |-  ( -. a R b -> ( Q ` if ( a R b , a , b ) ) = ( Q ` b ) ) | 
						
							| 76 | 74 75 | breq12d |  |-  ( -. a R b -> ( ( P ` if ( a R b , a , b ) ) S ( Q ` if ( a R b , a , b ) ) <-> ( P ` b ) S ( Q ` b ) ) ) | 
						
							| 77 | 72 76 | syl |  |-  ( ( ph /\ b R a ) -> ( ( P ` if ( a R b , a , b ) ) S ( Q ` if ( a R b , a , b ) ) <-> ( P ` b ) S ( Q ` b ) ) ) | 
						
							| 78 | 66 77 | mpbird |  |-  ( ( ph /\ b R a ) -> ( P ` if ( a R b , a , b ) ) S ( Q ` if ( a R b , a , b ) ) ) | 
						
							| 79 |  | solin |  |-  ( ( R Or A /\ ( a e. A /\ b e. A ) ) -> ( a R b \/ a = b \/ b R a ) ) | 
						
							| 80 | 5 7 10 79 | syl12anc |  |-  ( ph -> ( a R b \/ a = b \/ b R a ) ) | 
						
							| 81 | 28 57 78 80 | mpjao3dan |  |-  ( ph -> ( P ` if ( a R b , a , b ) ) S ( Q ` if ( a R b , a , b ) ) ) | 
						
							| 82 |  | r19.26 |  |-  ( A. c e. A ( ( c R a -> ( P ` c ) = ( X ` c ) ) /\ ( c R b -> ( X ` c ) = ( Q ` c ) ) ) <-> ( A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) | 
						
							| 83 | 9 12 82 | sylanbrc |  |-  ( ph -> A. c e. A ( ( c R a -> ( P ` c ) = ( X ` c ) ) /\ ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) | 
						
							| 84 | 5 7 10 | 3jca |  |-  ( ph -> ( R Or A /\ a e. A /\ b e. A ) ) | 
						
							| 85 |  | anim12 |  |-  ( ( ( c R a -> ( P ` c ) = ( X ` c ) ) /\ ( c R b -> ( X ` c ) = ( Q ` c ) ) ) -> ( ( c R a /\ c R b ) -> ( ( P ` c ) = ( X ` c ) /\ ( X ` c ) = ( Q ` c ) ) ) ) | 
						
							| 86 |  | eqtr |  |-  ( ( ( P ` c ) = ( X ` c ) /\ ( X ` c ) = ( Q ` c ) ) -> ( P ` c ) = ( Q ` c ) ) | 
						
							| 87 | 85 86 | syl6 |  |-  ( ( ( c R a -> ( P ` c ) = ( X ` c ) ) /\ ( c R b -> ( X ` c ) = ( Q ` c ) ) ) -> ( ( c R a /\ c R b ) -> ( P ` c ) = ( Q ` c ) ) ) | 
						
							| 88 | 87 | ralimi |  |-  ( A. c e. A ( ( c R a -> ( P ` c ) = ( X ` c ) ) /\ ( c R b -> ( X ` c ) = ( Q ` c ) ) ) -> A. c e. A ( ( c R a /\ c R b ) -> ( P ` c ) = ( Q ` c ) ) ) | 
						
							| 89 |  | simpl1 |  |-  ( ( ( R Or A /\ a e. A /\ b e. A ) /\ c e. A ) -> R Or A ) | 
						
							| 90 |  | simpr |  |-  ( ( ( R Or A /\ a e. A /\ b e. A ) /\ c e. A ) -> c e. A ) | 
						
							| 91 |  | simpl2 |  |-  ( ( ( R Or A /\ a e. A /\ b e. A ) /\ c e. A ) -> a e. A ) | 
						
							| 92 |  | simpl3 |  |-  ( ( ( R Or A /\ a e. A /\ b e. A ) /\ c e. A ) -> b e. A ) | 
						
							| 93 |  | soltmin |  |-  ( ( R Or A /\ ( c e. A /\ a e. A /\ b e. A ) ) -> ( c R if ( a R b , a , b ) <-> ( c R a /\ c R b ) ) ) | 
						
							| 94 | 89 90 91 92 93 | syl13anc |  |-  ( ( ( R Or A /\ a e. A /\ b e. A ) /\ c e. A ) -> ( c R if ( a R b , a , b ) <-> ( c R a /\ c R b ) ) ) | 
						
							| 95 | 94 | biimpd |  |-  ( ( ( R Or A /\ a e. A /\ b e. A ) /\ c e. A ) -> ( c R if ( a R b , a , b ) -> ( c R a /\ c R b ) ) ) | 
						
							| 96 | 95 | imim1d |  |-  ( ( ( R Or A /\ a e. A /\ b e. A ) /\ c e. A ) -> ( ( ( c R a /\ c R b ) -> ( P ` c ) = ( Q ` c ) ) -> ( c R if ( a R b , a , b ) -> ( P ` c ) = ( Q ` c ) ) ) ) | 
						
							| 97 | 96 | ralimdva |  |-  ( ( R Or A /\ a e. A /\ b e. A ) -> ( A. c e. A ( ( c R a /\ c R b ) -> ( P ` c ) = ( Q ` c ) ) -> A. c e. A ( c R if ( a R b , a , b ) -> ( P ` c ) = ( Q ` c ) ) ) ) | 
						
							| 98 | 84 88 97 | syl2im |  |-  ( ph -> ( A. c e. A ( ( c R a -> ( P ` c ) = ( X ` c ) ) /\ ( c R b -> ( X ` c ) = ( Q ` c ) ) ) -> A. c e. A ( c R if ( a R b , a , b ) -> ( P ` c ) = ( Q ` c ) ) ) ) | 
						
							| 99 | 83 98 | mpd |  |-  ( ph -> A. c e. A ( c R if ( a R b , a , b ) -> ( P ` c ) = ( Q ` c ) ) ) | 
						
							| 100 |  | fveq2 |  |-  ( d = if ( a R b , a , b ) -> ( P ` d ) = ( P ` if ( a R b , a , b ) ) ) | 
						
							| 101 |  | fveq2 |  |-  ( d = if ( a R b , a , b ) -> ( Q ` d ) = ( Q ` if ( a R b , a , b ) ) ) | 
						
							| 102 | 100 101 | breq12d |  |-  ( d = if ( a R b , a , b ) -> ( ( P ` d ) S ( Q ` d ) <-> ( P ` if ( a R b , a , b ) ) S ( Q ` if ( a R b , a , b ) ) ) ) | 
						
							| 103 |  | breq2 |  |-  ( d = if ( a R b , a , b ) -> ( c R d <-> c R if ( a R b , a , b ) ) ) | 
						
							| 104 | 103 | imbi1d |  |-  ( d = if ( a R b , a , b ) -> ( ( c R d -> ( P ` c ) = ( Q ` c ) ) <-> ( c R if ( a R b , a , b ) -> ( P ` c ) = ( Q ` c ) ) ) ) | 
						
							| 105 | 104 | ralbidv |  |-  ( d = if ( a R b , a , b ) -> ( A. c e. A ( c R d -> ( P ` c ) = ( Q ` c ) ) <-> A. c e. A ( c R if ( a R b , a , b ) -> ( P ` c ) = ( Q ` c ) ) ) ) | 
						
							| 106 | 102 105 | anbi12d |  |-  ( d = if ( a R b , a , b ) -> ( ( ( P ` d ) S ( Q ` d ) /\ A. c e. A ( c R d -> ( P ` c ) = ( Q ` c ) ) ) <-> ( ( P ` if ( a R b , a , b ) ) S ( Q ` if ( a R b , a , b ) ) /\ A. c e. A ( c R if ( a R b , a , b ) -> ( P ` c ) = ( Q ` c ) ) ) ) ) | 
						
							| 107 | 106 | rspcev |  |-  ( ( if ( a R b , a , b ) e. A /\ ( ( P ` if ( a R b , a , b ) ) S ( Q ` if ( a R b , a , b ) ) /\ A. c e. A ( c R if ( a R b , a , b ) -> ( P ` c ) = ( Q ` c ) ) ) ) -> E. d e. A ( ( P ` d ) S ( Q ` d ) /\ A. c e. A ( c R d -> ( P ` c ) = ( Q ` c ) ) ) ) | 
						
							| 108 | 13 81 99 107 | syl12anc |  |-  ( ph -> E. d e. A ( ( P ` d ) S ( Q ` d ) /\ A. c e. A ( c R d -> ( P ` c ) = ( Q ` c ) ) ) ) | 
						
							| 109 | 1 | wemaplem1 |  |-  ( ( P e. ( B ^m A ) /\ Q e. ( B ^m A ) ) -> ( P T Q <-> E. d e. A ( ( P ` d ) S ( Q ` d ) /\ A. c e. A ( c R d -> ( P ` c ) = ( Q ` c ) ) ) ) ) | 
						
							| 110 | 2 4 109 | syl2anc |  |-  ( ph -> ( P T Q <-> E. d e. A ( ( P ` d ) S ( Q ` d ) /\ A. c e. A ( c R d -> ( P ` c ) = ( Q ` c ) ) ) ) ) | 
						
							| 111 | 108 110 | mpbird |  |-  ( ph -> P T Q ) |