Step |
Hyp |
Ref |
Expression |
1 |
|
wemapso.t |
|- T = { <. x , y >. | E. z e. A ( ( x ` z ) S ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } |
2 |
|
wemaplem2.p |
|- ( ph -> P e. ( B ^m A ) ) |
3 |
|
wemaplem2.x |
|- ( ph -> X e. ( B ^m A ) ) |
4 |
|
wemaplem2.q |
|- ( ph -> Q e. ( B ^m A ) ) |
5 |
|
wemaplem2.r |
|- ( ph -> R Or A ) |
6 |
|
wemaplem2.s |
|- ( ph -> S Po B ) |
7 |
|
wemaplem3.px |
|- ( ph -> P T X ) |
8 |
|
wemaplem3.xq |
|- ( ph -> X T Q ) |
9 |
1
|
wemaplem1 |
|- ( ( P e. ( B ^m A ) /\ X e. ( B ^m A ) ) -> ( P T X <-> E. a e. A ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) |
10 |
2 3 9
|
syl2anc |
|- ( ph -> ( P T X <-> E. a e. A ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) |
11 |
7 10
|
mpbid |
|- ( ph -> E. a e. A ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) |
12 |
1
|
wemaplem1 |
|- ( ( X e. ( B ^m A ) /\ Q e. ( B ^m A ) ) -> ( X T Q <-> E. b e. A ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) |
13 |
3 4 12
|
syl2anc |
|- ( ph -> ( X T Q <-> E. b e. A ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) |
14 |
8 13
|
mpbid |
|- ( ph -> E. b e. A ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) |
15 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) /\ ( b e. A /\ ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) -> P e. ( B ^m A ) ) |
16 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) /\ ( b e. A /\ ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) -> X e. ( B ^m A ) ) |
17 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) /\ ( b e. A /\ ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) -> Q e. ( B ^m A ) ) |
18 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) /\ ( b e. A /\ ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) -> R Or A ) |
19 |
6
|
ad2antrr |
|- ( ( ( ph /\ ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) /\ ( b e. A /\ ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) -> S Po B ) |
20 |
|
simplrl |
|- ( ( ( ph /\ ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) /\ ( b e. A /\ ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) -> a e. A ) |
21 |
|
simp2rl |
|- ( ( ph /\ ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) /\ ( b e. A /\ ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) -> ( P ` a ) S ( X ` a ) ) |
22 |
21
|
3expa |
|- ( ( ( ph /\ ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) /\ ( b e. A /\ ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) -> ( P ` a ) S ( X ` a ) ) |
23 |
|
simprr |
|- ( ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) -> A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) |
24 |
23
|
ad2antlr |
|- ( ( ( ph /\ ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) /\ ( b e. A /\ ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) -> A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) |
25 |
|
simprl |
|- ( ( ( ph /\ ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) /\ ( b e. A /\ ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) -> b e. A ) |
26 |
|
simprrl |
|- ( ( ( ph /\ ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) /\ ( b e. A /\ ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) -> ( X ` b ) S ( Q ` b ) ) |
27 |
|
simprrr |
|- ( ( ( ph /\ ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) /\ ( b e. A /\ ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) -> A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) |
28 |
1 15 16 17 18 19 20 22 24 25 26 27
|
wemaplem2 |
|- ( ( ( ph /\ ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) /\ ( b e. A /\ ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) ) -> P T Q ) |
29 |
28
|
rexlimdvaa |
|- ( ( ph /\ ( a e. A /\ ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) ) ) -> ( E. b e. A ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) -> P T Q ) ) |
30 |
29
|
rexlimdvaa |
|- ( ph -> ( E. a e. A ( ( P ` a ) S ( X ` a ) /\ A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) -> ( E. b e. A ( ( X ` b ) S ( Q ` b ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) -> P T Q ) ) ) |
31 |
11 14 30
|
mp2d |
|- ( ph -> P T Q ) |