| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wemapso.t |  |-  T = { <. x , y >. | E. z e. A ( ( x ` z ) S ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } | 
						
							| 2 |  | ssid |  |-  ( B ^m A ) C_ ( B ^m A ) | 
						
							| 3 |  | weso |  |-  ( R We A -> R Or A ) | 
						
							| 4 | 3 | adantr |  |-  ( ( R We A /\ S Or B ) -> R Or A ) | 
						
							| 5 |  | simpr |  |-  ( ( R We A /\ S Or B ) -> S Or B ) | 
						
							| 6 |  | vex |  |-  a e. _V | 
						
							| 7 | 6 | difexi |  |-  ( a \ b ) e. _V | 
						
							| 8 | 7 | dmex |  |-  dom ( a \ b ) e. _V | 
						
							| 9 | 8 | a1i |  |-  ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> dom ( a \ b ) e. _V ) | 
						
							| 10 |  | wefr |  |-  ( R We A -> R Fr A ) | 
						
							| 11 | 10 | ad2antrr |  |-  ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> R Fr A ) | 
						
							| 12 |  | difss |  |-  ( a \ b ) C_ a | 
						
							| 13 |  | dmss |  |-  ( ( a \ b ) C_ a -> dom ( a \ b ) C_ dom a ) | 
						
							| 14 | 12 13 | ax-mp |  |-  dom ( a \ b ) C_ dom a | 
						
							| 15 |  | simprll |  |-  ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> a e. ( B ^m A ) ) | 
						
							| 16 |  | elmapi |  |-  ( a e. ( B ^m A ) -> a : A --> B ) | 
						
							| 17 | 15 16 | syl |  |-  ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> a : A --> B ) | 
						
							| 18 | 14 17 | fssdm |  |-  ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> dom ( a \ b ) C_ A ) | 
						
							| 19 |  | simprr |  |-  ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> a =/= b ) | 
						
							| 20 | 17 | ffnd |  |-  ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> a Fn A ) | 
						
							| 21 |  | simprlr |  |-  ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> b e. ( B ^m A ) ) | 
						
							| 22 |  | elmapi |  |-  ( b e. ( B ^m A ) -> b : A --> B ) | 
						
							| 23 | 21 22 | syl |  |-  ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> b : A --> B ) | 
						
							| 24 | 23 | ffnd |  |-  ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> b Fn A ) | 
						
							| 25 |  | fndmdifeq0 |  |-  ( ( a Fn A /\ b Fn A ) -> ( dom ( a \ b ) = (/) <-> a = b ) ) | 
						
							| 26 | 20 24 25 | syl2anc |  |-  ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> ( dom ( a \ b ) = (/) <-> a = b ) ) | 
						
							| 27 | 26 | necon3bid |  |-  ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> ( dom ( a \ b ) =/= (/) <-> a =/= b ) ) | 
						
							| 28 | 19 27 | mpbird |  |-  ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> dom ( a \ b ) =/= (/) ) | 
						
							| 29 |  | fri |  |-  ( ( ( dom ( a \ b ) e. _V /\ R Fr A ) /\ ( dom ( a \ b ) C_ A /\ dom ( a \ b ) =/= (/) ) ) -> E. c e. dom ( a \ b ) A. d e. dom ( a \ b ) -. d R c ) | 
						
							| 30 | 9 11 18 28 29 | syl22anc |  |-  ( ( ( R We A /\ S Or B ) /\ ( ( a e. ( B ^m A ) /\ b e. ( B ^m A ) ) /\ a =/= b ) ) -> E. c e. dom ( a \ b ) A. d e. dom ( a \ b ) -. d R c ) | 
						
							| 31 | 1 2 4 5 30 | wemapsolem |  |-  ( ( R We A /\ S Or B ) -> T Or ( B ^m A ) ) |