Step |
Hyp |
Ref |
Expression |
1 |
|
wemapso.t |
|- T = { <. x , y >. | E. z e. A ( ( x ` z ) S ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } |
2 |
|
wemapso2.u |
|- U = { x e. ( B ^m A ) | x finSupp Z } |
3 |
1 2
|
wemapso2lem |
|- ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. _V ) -> T Or U ) |
4 |
3
|
expcom |
|- ( Z e. _V -> ( ( A e. V /\ R Or A /\ S Or B ) -> T Or U ) ) |
5 |
|
so0 |
|- T Or (/) |
6 |
|
relfsupp |
|- Rel finSupp |
7 |
6
|
brrelex2i |
|- ( x finSupp Z -> Z e. _V ) |
8 |
7
|
con3i |
|- ( -. Z e. _V -> -. x finSupp Z ) |
9 |
8
|
ralrimivw |
|- ( -. Z e. _V -> A. x e. ( B ^m A ) -. x finSupp Z ) |
10 |
|
rabeq0 |
|- ( { x e. ( B ^m A ) | x finSupp Z } = (/) <-> A. x e. ( B ^m A ) -. x finSupp Z ) |
11 |
9 10
|
sylibr |
|- ( -. Z e. _V -> { x e. ( B ^m A ) | x finSupp Z } = (/) ) |
12 |
2 11
|
eqtrid |
|- ( -. Z e. _V -> U = (/) ) |
13 |
|
soeq2 |
|- ( U = (/) -> ( T Or U <-> T Or (/) ) ) |
14 |
12 13
|
syl |
|- ( -. Z e. _V -> ( T Or U <-> T Or (/) ) ) |
15 |
5 14
|
mpbiri |
|- ( -. Z e. _V -> T Or U ) |
16 |
15
|
a1d |
|- ( -. Z e. _V -> ( ( A e. V /\ R Or A /\ S Or B ) -> T Or U ) ) |
17 |
4 16
|
pm2.61i |
|- ( ( A e. V /\ R Or A /\ S Or B ) -> T Or U ) |