| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wemapso.t |  |-  T = { <. x , y >. | E. z e. A ( ( x ` z ) S ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } | 
						
							| 2 |  | wemapso2.u |  |-  U = { x e. ( B ^m A ) | x finSupp Z } | 
						
							| 3 | 2 | ssrab3 |  |-  U C_ ( B ^m A ) | 
						
							| 4 |  | simpl2 |  |-  ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) -> R Or A ) | 
						
							| 5 |  | simpl3 |  |-  ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) -> S Or B ) | 
						
							| 6 |  | simprll |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a e. U ) | 
						
							| 7 |  | breq1 |  |-  ( x = a -> ( x finSupp Z <-> a finSupp Z ) ) | 
						
							| 8 | 7 2 | elrab2 |  |-  ( a e. U <-> ( a e. ( B ^m A ) /\ a finSupp Z ) ) | 
						
							| 9 | 8 | simprbi |  |-  ( a e. U -> a finSupp Z ) | 
						
							| 10 | 6 9 | syl |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a finSupp Z ) | 
						
							| 11 |  | simprlr |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> b e. U ) | 
						
							| 12 |  | breq1 |  |-  ( x = b -> ( x finSupp Z <-> b finSupp Z ) ) | 
						
							| 13 | 12 2 | elrab2 |  |-  ( b e. U <-> ( b e. ( B ^m A ) /\ b finSupp Z ) ) | 
						
							| 14 | 13 | simprbi |  |-  ( b e. U -> b finSupp Z ) | 
						
							| 15 | 11 14 | syl |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> b finSupp Z ) | 
						
							| 16 | 10 15 | fsuppunfi |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( ( a supp Z ) u. ( b supp Z ) ) e. Fin ) | 
						
							| 17 | 3 6 | sselid |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a e. ( B ^m A ) ) | 
						
							| 18 |  | elmapi |  |-  ( a e. ( B ^m A ) -> a : A --> B ) | 
						
							| 19 | 17 18 | syl |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a : A --> B ) | 
						
							| 20 | 19 | ffnd |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a Fn A ) | 
						
							| 21 | 3 11 | sselid |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> b e. ( B ^m A ) ) | 
						
							| 22 |  | elmapi |  |-  ( b e. ( B ^m A ) -> b : A --> B ) | 
						
							| 23 | 21 22 | syl |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> b : A --> B ) | 
						
							| 24 | 23 | ffnd |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> b Fn A ) | 
						
							| 25 |  | fndmdif |  |-  ( ( a Fn A /\ b Fn A ) -> dom ( a \ b ) = { c e. A | ( a ` c ) =/= ( b ` c ) } ) | 
						
							| 26 | 20 24 25 | syl2anc |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> dom ( a \ b ) = { c e. A | ( a ` c ) =/= ( b ` c ) } ) | 
						
							| 27 |  | neneor |  |-  ( ( a ` c ) =/= ( b ` c ) -> ( ( a ` c ) =/= Z \/ ( b ` c ) =/= Z ) ) | 
						
							| 28 |  | elun |  |-  ( c e. ( ( a supp Z ) u. ( b supp Z ) ) <-> ( c e. ( a supp Z ) \/ c e. ( b supp Z ) ) ) | 
						
							| 29 |  | simpr |  |-  ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> c e. A ) | 
						
							| 30 | 20 | adantr |  |-  ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> a Fn A ) | 
						
							| 31 |  | elex |  |-  ( A e. V -> A e. _V ) | 
						
							| 32 | 31 | 3ad2ant1 |  |-  ( ( A e. V /\ R Or A /\ S Or B ) -> A e. _V ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) -> A e. _V ) | 
						
							| 34 | 33 | ad2antrr |  |-  ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> A e. _V ) | 
						
							| 35 |  | simpr |  |-  ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) -> Z e. W ) | 
						
							| 36 | 35 | ad2antrr |  |-  ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> Z e. W ) | 
						
							| 37 |  | elsuppfn |  |-  ( ( a Fn A /\ A e. _V /\ Z e. W ) -> ( c e. ( a supp Z ) <-> ( c e. A /\ ( a ` c ) =/= Z ) ) ) | 
						
							| 38 | 30 34 36 37 | syl3anc |  |-  ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( c e. ( a supp Z ) <-> ( c e. A /\ ( a ` c ) =/= Z ) ) ) | 
						
							| 39 | 29 38 | mpbirand |  |-  ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( c e. ( a supp Z ) <-> ( a ` c ) =/= Z ) ) | 
						
							| 40 | 24 | adantr |  |-  ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> b Fn A ) | 
						
							| 41 |  | simpll1 |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> A e. V ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> A e. V ) | 
						
							| 43 |  | elsuppfn |  |-  ( ( b Fn A /\ A e. V /\ Z e. W ) -> ( c e. ( b supp Z ) <-> ( c e. A /\ ( b ` c ) =/= Z ) ) ) | 
						
							| 44 | 40 42 36 43 | syl3anc |  |-  ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( c e. ( b supp Z ) <-> ( c e. A /\ ( b ` c ) =/= Z ) ) ) | 
						
							| 45 | 29 44 | mpbirand |  |-  ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( c e. ( b supp Z ) <-> ( b ` c ) =/= Z ) ) | 
						
							| 46 | 39 45 | orbi12d |  |-  ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( ( c e. ( a supp Z ) \/ c e. ( b supp Z ) ) <-> ( ( a ` c ) =/= Z \/ ( b ` c ) =/= Z ) ) ) | 
						
							| 47 | 28 46 | bitrid |  |-  ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( c e. ( ( a supp Z ) u. ( b supp Z ) ) <-> ( ( a ` c ) =/= Z \/ ( b ` c ) =/= Z ) ) ) | 
						
							| 48 | 27 47 | imbitrrid |  |-  ( ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( ( a ` c ) =/= ( b ` c ) -> c e. ( ( a supp Z ) u. ( b supp Z ) ) ) ) | 
						
							| 49 | 48 | ralrimiva |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> A. c e. A ( ( a ` c ) =/= ( b ` c ) -> c e. ( ( a supp Z ) u. ( b supp Z ) ) ) ) | 
						
							| 50 |  | rabss |  |-  ( { c e. A | ( a ` c ) =/= ( b ` c ) } C_ ( ( a supp Z ) u. ( b supp Z ) ) <-> A. c e. A ( ( a ` c ) =/= ( b ` c ) -> c e. ( ( a supp Z ) u. ( b supp Z ) ) ) ) | 
						
							| 51 | 49 50 | sylibr |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> { c e. A | ( a ` c ) =/= ( b ` c ) } C_ ( ( a supp Z ) u. ( b supp Z ) ) ) | 
						
							| 52 | 26 51 | eqsstrd |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> dom ( a \ b ) C_ ( ( a supp Z ) u. ( b supp Z ) ) ) | 
						
							| 53 | 16 52 | ssfid |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> dom ( a \ b ) e. Fin ) | 
						
							| 54 |  | suppssdm |  |-  ( a supp Z ) C_ dom a | 
						
							| 55 | 54 19 | fssdm |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( a supp Z ) C_ A ) | 
						
							| 56 |  | suppssdm |  |-  ( b supp Z ) C_ dom b | 
						
							| 57 | 56 23 | fssdm |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( b supp Z ) C_ A ) | 
						
							| 58 | 55 57 | unssd |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( ( a supp Z ) u. ( b supp Z ) ) C_ A ) | 
						
							| 59 | 4 | adantr |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> R Or A ) | 
						
							| 60 |  | soss |  |-  ( ( ( a supp Z ) u. ( b supp Z ) ) C_ A -> ( R Or A -> R Or ( ( a supp Z ) u. ( b supp Z ) ) ) ) | 
						
							| 61 | 58 59 60 | sylc |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> R Or ( ( a supp Z ) u. ( b supp Z ) ) ) | 
						
							| 62 |  | wofi |  |-  ( ( R Or ( ( a supp Z ) u. ( b supp Z ) ) /\ ( ( a supp Z ) u. ( b supp Z ) ) e. Fin ) -> R We ( ( a supp Z ) u. ( b supp Z ) ) ) | 
						
							| 63 | 61 16 62 | syl2anc |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> R We ( ( a supp Z ) u. ( b supp Z ) ) ) | 
						
							| 64 |  | wefr |  |-  ( R We ( ( a supp Z ) u. ( b supp Z ) ) -> R Fr ( ( a supp Z ) u. ( b supp Z ) ) ) | 
						
							| 65 | 63 64 | syl |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> R Fr ( ( a supp Z ) u. ( b supp Z ) ) ) | 
						
							| 66 |  | simprr |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a =/= b ) | 
						
							| 67 |  | fndmdifeq0 |  |-  ( ( a Fn A /\ b Fn A ) -> ( dom ( a \ b ) = (/) <-> a = b ) ) | 
						
							| 68 | 20 24 67 | syl2anc |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( dom ( a \ b ) = (/) <-> a = b ) ) | 
						
							| 69 | 68 | necon3bid |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( dom ( a \ b ) =/= (/) <-> a =/= b ) ) | 
						
							| 70 | 66 69 | mpbird |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> dom ( a \ b ) =/= (/) ) | 
						
							| 71 |  | fri |  |-  ( ( ( dom ( a \ b ) e. Fin /\ R Fr ( ( a supp Z ) u. ( b supp Z ) ) ) /\ ( dom ( a \ b ) C_ ( ( a supp Z ) u. ( b supp Z ) ) /\ dom ( a \ b ) =/= (/) ) ) -> E. c e. dom ( a \ b ) A. d e. dom ( a \ b ) -. d R c ) | 
						
							| 72 | 53 65 52 70 71 | syl22anc |  |-  ( ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> E. c e. dom ( a \ b ) A. d e. dom ( a \ b ) -. d R c ) | 
						
							| 73 | 1 3 4 5 72 | wemapsolem |  |-  ( ( ( A e. V /\ R Or A /\ S Or B ) /\ Z e. W ) -> T Or U ) |