Step |
Hyp |
Ref |
Expression |
1 |
|
wemapso.t |
|- T = { <. x , y >. | E. z e. A ( ( x ` z ) S ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } |
2 |
|
wemapsolem.1 |
|- U C_ ( B ^m A ) |
3 |
|
wemapsolem.2 |
|- ( ph -> R Or A ) |
4 |
|
wemapsolem.3 |
|- ( ph -> S Or B ) |
5 |
|
wemapsolem.4 |
|- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> E. c e. dom ( a \ b ) A. d e. dom ( a \ b ) -. d R c ) |
6 |
|
sopo |
|- ( S Or B -> S Po B ) |
7 |
4 6
|
syl |
|- ( ph -> S Po B ) |
8 |
1
|
wemappo |
|- ( ( R Or A /\ S Po B ) -> T Po ( B ^m A ) ) |
9 |
3 7 8
|
syl2anc |
|- ( ph -> T Po ( B ^m A ) ) |
10 |
|
poss |
|- ( U C_ ( B ^m A ) -> ( T Po ( B ^m A ) -> T Po U ) ) |
11 |
2 9 10
|
mpsyl |
|- ( ph -> T Po U ) |
12 |
|
df-ne |
|- ( a =/= b <-> -. a = b ) |
13 |
|
simprll |
|- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a e. U ) |
14 |
2 13
|
sselid |
|- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a e. ( B ^m A ) ) |
15 |
|
elmapi |
|- ( a e. ( B ^m A ) -> a : A --> B ) |
16 |
14 15
|
syl |
|- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a : A --> B ) |
17 |
16
|
ffnd |
|- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a Fn A ) |
18 |
|
simprlr |
|- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> b e. U ) |
19 |
2 18
|
sselid |
|- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> b e. ( B ^m A ) ) |
20 |
|
elmapi |
|- ( b e. ( B ^m A ) -> b : A --> B ) |
21 |
19 20
|
syl |
|- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> b : A --> B ) |
22 |
21
|
ffnd |
|- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> b Fn A ) |
23 |
|
fndmdif |
|- ( ( a Fn A /\ b Fn A ) -> dom ( a \ b ) = { x e. A | ( a ` x ) =/= ( b ` x ) } ) |
24 |
17 22 23
|
syl2anc |
|- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> dom ( a \ b ) = { x e. A | ( a ` x ) =/= ( b ` x ) } ) |
25 |
24
|
eleq2d |
|- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( c e. dom ( a \ b ) <-> c e. { x e. A | ( a ` x ) =/= ( b ` x ) } ) ) |
26 |
|
nesym |
|- ( ( a ` x ) =/= ( b ` x ) <-> -. ( b ` x ) = ( a ` x ) ) |
27 |
|
fveq2 |
|- ( x = c -> ( b ` x ) = ( b ` c ) ) |
28 |
|
fveq2 |
|- ( x = c -> ( a ` x ) = ( a ` c ) ) |
29 |
27 28
|
eqeq12d |
|- ( x = c -> ( ( b ` x ) = ( a ` x ) <-> ( b ` c ) = ( a ` c ) ) ) |
30 |
29
|
notbid |
|- ( x = c -> ( -. ( b ` x ) = ( a ` x ) <-> -. ( b ` c ) = ( a ` c ) ) ) |
31 |
26 30
|
syl5bb |
|- ( x = c -> ( ( a ` x ) =/= ( b ` x ) <-> -. ( b ` c ) = ( a ` c ) ) ) |
32 |
31
|
elrab |
|- ( c e. { x e. A | ( a ` x ) =/= ( b ` x ) } <-> ( c e. A /\ -. ( b ` c ) = ( a ` c ) ) ) |
33 |
25 32
|
bitrdi |
|- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( c e. dom ( a \ b ) <-> ( c e. A /\ -. ( b ` c ) = ( a ` c ) ) ) ) |
34 |
24
|
eleq2d |
|- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( d e. dom ( a \ b ) <-> d e. { x e. A | ( a ` x ) =/= ( b ` x ) } ) ) |
35 |
|
fveq2 |
|- ( x = d -> ( b ` x ) = ( b ` d ) ) |
36 |
|
fveq2 |
|- ( x = d -> ( a ` x ) = ( a ` d ) ) |
37 |
35 36
|
eqeq12d |
|- ( x = d -> ( ( b ` x ) = ( a ` x ) <-> ( b ` d ) = ( a ` d ) ) ) |
38 |
37
|
notbid |
|- ( x = d -> ( -. ( b ` x ) = ( a ` x ) <-> -. ( b ` d ) = ( a ` d ) ) ) |
39 |
26 38
|
syl5bb |
|- ( x = d -> ( ( a ` x ) =/= ( b ` x ) <-> -. ( b ` d ) = ( a ` d ) ) ) |
40 |
39
|
elrab |
|- ( d e. { x e. A | ( a ` x ) =/= ( b ` x ) } <-> ( d e. A /\ -. ( b ` d ) = ( a ` d ) ) ) |
41 |
34 40
|
bitrdi |
|- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( d e. dom ( a \ b ) <-> ( d e. A /\ -. ( b ` d ) = ( a ` d ) ) ) ) |
42 |
41
|
imbi1d |
|- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( ( d e. dom ( a \ b ) -> -. d R c ) <-> ( ( d e. A /\ -. ( b ` d ) = ( a ` d ) ) -> -. d R c ) ) ) |
43 |
|
impexp |
|- ( ( ( d e. A /\ -. ( b ` d ) = ( a ` d ) ) -> -. d R c ) <-> ( d e. A -> ( -. ( b ` d ) = ( a ` d ) -> -. d R c ) ) ) |
44 |
|
con34b |
|- ( ( d R c -> ( b ` d ) = ( a ` d ) ) <-> ( -. ( b ` d ) = ( a ` d ) -> -. d R c ) ) |
45 |
44
|
imbi2i |
|- ( ( d e. A -> ( d R c -> ( b ` d ) = ( a ` d ) ) ) <-> ( d e. A -> ( -. ( b ` d ) = ( a ` d ) -> -. d R c ) ) ) |
46 |
43 45
|
bitr4i |
|- ( ( ( d e. A /\ -. ( b ` d ) = ( a ` d ) ) -> -. d R c ) <-> ( d e. A -> ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) |
47 |
42 46
|
bitrdi |
|- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( ( d e. dom ( a \ b ) -> -. d R c ) <-> ( d e. A -> ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) ) |
48 |
47
|
ralbidv2 |
|- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( A. d e. dom ( a \ b ) -. d R c <-> A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) |
49 |
33 48
|
anbi12d |
|- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( ( c e. dom ( a \ b ) /\ A. d e. dom ( a \ b ) -. d R c ) <-> ( ( c e. A /\ -. ( b ` c ) = ( a ` c ) ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) ) |
50 |
|
anass |
|- ( ( ( c e. A /\ -. ( b ` c ) = ( a ` c ) ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) <-> ( c e. A /\ ( -. ( b ` c ) = ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) ) |
51 |
49 50
|
bitrdi |
|- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( ( c e. dom ( a \ b ) /\ A. d e. dom ( a \ b ) -. d R c ) <-> ( c e. A /\ ( -. ( b ` c ) = ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) ) ) |
52 |
51
|
rexbidv2 |
|- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( E. c e. dom ( a \ b ) A. d e. dom ( a \ b ) -. d R c <-> E. c e. A ( -. ( b ` c ) = ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) ) |
53 |
5 52
|
mpbid |
|- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> E. c e. A ( -. ( b ` c ) = ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) |
54 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> S Or B ) |
55 |
21
|
ffvelrnda |
|- ( ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( b ` c ) e. B ) |
56 |
16
|
ffvelrnda |
|- ( ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( a ` c ) e. B ) |
57 |
|
sotrieq |
|- ( ( S Or B /\ ( ( b ` c ) e. B /\ ( a ` c ) e. B ) ) -> ( ( b ` c ) = ( a ` c ) <-> -. ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) ) ) |
58 |
57
|
con2bid |
|- ( ( S Or B /\ ( ( b ` c ) e. B /\ ( a ` c ) e. B ) ) -> ( ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) <-> -. ( b ` c ) = ( a ` c ) ) ) |
59 |
58
|
biimprd |
|- ( ( S Or B /\ ( ( b ` c ) e. B /\ ( a ` c ) e. B ) ) -> ( -. ( b ` c ) = ( a ` c ) -> ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) ) ) |
60 |
54 55 56 59
|
syl12anc |
|- ( ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( -. ( b ` c ) = ( a ` c ) -> ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) ) ) |
61 |
60
|
anim1d |
|- ( ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( ( -. ( b ` c ) = ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) -> ( ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) ) |
62 |
61
|
reximdva |
|- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( E. c e. A ( -. ( b ` c ) = ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) -> E. c e. A ( ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) ) |
63 |
53 62
|
mpd |
|- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> E. c e. A ( ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) |
64 |
1
|
wemaplem1 |
|- ( ( b e. _V /\ a e. _V ) -> ( b T a <-> E. c e. A ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) ) |
65 |
64
|
el2v |
|- ( b T a <-> E. c e. A ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) |
66 |
1
|
wemaplem1 |
|- ( ( a e. _V /\ b e. _V ) -> ( a T b <-> E. c e. A ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) ) ) |
67 |
66
|
el2v |
|- ( a T b <-> E. c e. A ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) ) |
68 |
65 67
|
orbi12i |
|- ( ( b T a \/ a T b ) <-> ( E. c e. A ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) \/ E. c e. A ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) ) ) |
69 |
|
r19.43 |
|- ( E. c e. A ( ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) \/ ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) ) <-> ( E. c e. A ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) \/ E. c e. A ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) ) ) |
70 |
|
andir |
|- ( ( ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) <-> ( ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) \/ ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) ) |
71 |
|
eqcom |
|- ( ( b ` d ) = ( a ` d ) <-> ( a ` d ) = ( b ` d ) ) |
72 |
71
|
imbi2i |
|- ( ( d R c -> ( b ` d ) = ( a ` d ) ) <-> ( d R c -> ( a ` d ) = ( b ` d ) ) ) |
73 |
72
|
ralbii |
|- ( A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) <-> A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) |
74 |
73
|
anbi2i |
|- ( ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) <-> ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) ) |
75 |
74
|
orbi2i |
|- ( ( ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) \/ ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) <-> ( ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) \/ ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) ) ) |
76 |
70 75
|
bitr2i |
|- ( ( ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) \/ ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) ) <-> ( ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) |
77 |
76
|
rexbii |
|- ( E. c e. A ( ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) \/ ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) ) <-> E. c e. A ( ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) |
78 |
68 69 77
|
3bitr2i |
|- ( ( b T a \/ a T b ) <-> E. c e. A ( ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) |
79 |
63 78
|
sylibr |
|- ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( b T a \/ a T b ) ) |
80 |
79
|
expr |
|- ( ( ph /\ ( a e. U /\ b e. U ) ) -> ( a =/= b -> ( b T a \/ a T b ) ) ) |
81 |
12 80
|
syl5bir |
|- ( ( ph /\ ( a e. U /\ b e. U ) ) -> ( -. a = b -> ( b T a \/ a T b ) ) ) |
82 |
81
|
orrd |
|- ( ( ph /\ ( a e. U /\ b e. U ) ) -> ( a = b \/ ( b T a \/ a T b ) ) ) |
83 |
|
3orrot |
|- ( ( a T b \/ a = b \/ b T a ) <-> ( a = b \/ b T a \/ a T b ) ) |
84 |
|
3orass |
|- ( ( a = b \/ b T a \/ a T b ) <-> ( a = b \/ ( b T a \/ a T b ) ) ) |
85 |
83 84
|
bitr2i |
|- ( ( a = b \/ ( b T a \/ a T b ) ) <-> ( a T b \/ a = b \/ b T a ) ) |
86 |
82 85
|
sylib |
|- ( ( ph /\ ( a e. U /\ b e. U ) ) -> ( a T b \/ a = b \/ b T a ) ) |
87 |
11 86
|
issod |
|- ( ph -> T Or U ) |