| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wemapso.t |  |-  T = { <. x , y >. | E. z e. A ( ( x ` z ) S ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } | 
						
							| 2 |  | wemapsolem.1 |  |-  U C_ ( B ^m A ) | 
						
							| 3 |  | wemapsolem.2 |  |-  ( ph -> R Or A ) | 
						
							| 4 |  | wemapsolem.3 |  |-  ( ph -> S Or B ) | 
						
							| 5 |  | wemapsolem.4 |  |-  ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> E. c e. dom ( a \ b ) A. d e. dom ( a \ b ) -. d R c ) | 
						
							| 6 |  | sopo |  |-  ( S Or B -> S Po B ) | 
						
							| 7 | 4 6 | syl |  |-  ( ph -> S Po B ) | 
						
							| 8 | 1 | wemappo |  |-  ( ( R Or A /\ S Po B ) -> T Po ( B ^m A ) ) | 
						
							| 9 | 3 7 8 | syl2anc |  |-  ( ph -> T Po ( B ^m A ) ) | 
						
							| 10 |  | poss |  |-  ( U C_ ( B ^m A ) -> ( T Po ( B ^m A ) -> T Po U ) ) | 
						
							| 11 | 2 9 10 | mpsyl |  |-  ( ph -> T Po U ) | 
						
							| 12 |  | df-ne |  |-  ( a =/= b <-> -. a = b ) | 
						
							| 13 |  | simprll |  |-  ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a e. U ) | 
						
							| 14 | 2 13 | sselid |  |-  ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a e. ( B ^m A ) ) | 
						
							| 15 |  | elmapi |  |-  ( a e. ( B ^m A ) -> a : A --> B ) | 
						
							| 16 | 14 15 | syl |  |-  ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a : A --> B ) | 
						
							| 17 | 16 | ffnd |  |-  ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> a Fn A ) | 
						
							| 18 |  | simprlr |  |-  ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> b e. U ) | 
						
							| 19 | 2 18 | sselid |  |-  ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> b e. ( B ^m A ) ) | 
						
							| 20 |  | elmapi |  |-  ( b e. ( B ^m A ) -> b : A --> B ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> b : A --> B ) | 
						
							| 22 | 21 | ffnd |  |-  ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> b Fn A ) | 
						
							| 23 |  | fndmdif |  |-  ( ( a Fn A /\ b Fn A ) -> dom ( a \ b ) = { x e. A | ( a ` x ) =/= ( b ` x ) } ) | 
						
							| 24 | 17 22 23 | syl2anc |  |-  ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> dom ( a \ b ) = { x e. A | ( a ` x ) =/= ( b ` x ) } ) | 
						
							| 25 | 24 | eleq2d |  |-  ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( c e. dom ( a \ b ) <-> c e. { x e. A | ( a ` x ) =/= ( b ` x ) } ) ) | 
						
							| 26 |  | nesym |  |-  ( ( a ` x ) =/= ( b ` x ) <-> -. ( b ` x ) = ( a ` x ) ) | 
						
							| 27 |  | fveq2 |  |-  ( x = c -> ( b ` x ) = ( b ` c ) ) | 
						
							| 28 |  | fveq2 |  |-  ( x = c -> ( a ` x ) = ( a ` c ) ) | 
						
							| 29 | 27 28 | eqeq12d |  |-  ( x = c -> ( ( b ` x ) = ( a ` x ) <-> ( b ` c ) = ( a ` c ) ) ) | 
						
							| 30 | 29 | notbid |  |-  ( x = c -> ( -. ( b ` x ) = ( a ` x ) <-> -. ( b ` c ) = ( a ` c ) ) ) | 
						
							| 31 | 26 30 | bitrid |  |-  ( x = c -> ( ( a ` x ) =/= ( b ` x ) <-> -. ( b ` c ) = ( a ` c ) ) ) | 
						
							| 32 | 31 | elrab |  |-  ( c e. { x e. A | ( a ` x ) =/= ( b ` x ) } <-> ( c e. A /\ -. ( b ` c ) = ( a ` c ) ) ) | 
						
							| 33 | 25 32 | bitrdi |  |-  ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( c e. dom ( a \ b ) <-> ( c e. A /\ -. ( b ` c ) = ( a ` c ) ) ) ) | 
						
							| 34 | 24 | eleq2d |  |-  ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( d e. dom ( a \ b ) <-> d e. { x e. A | ( a ` x ) =/= ( b ` x ) } ) ) | 
						
							| 35 |  | fveq2 |  |-  ( x = d -> ( b ` x ) = ( b ` d ) ) | 
						
							| 36 |  | fveq2 |  |-  ( x = d -> ( a ` x ) = ( a ` d ) ) | 
						
							| 37 | 35 36 | eqeq12d |  |-  ( x = d -> ( ( b ` x ) = ( a ` x ) <-> ( b ` d ) = ( a ` d ) ) ) | 
						
							| 38 | 37 | notbid |  |-  ( x = d -> ( -. ( b ` x ) = ( a ` x ) <-> -. ( b ` d ) = ( a ` d ) ) ) | 
						
							| 39 | 26 38 | bitrid |  |-  ( x = d -> ( ( a ` x ) =/= ( b ` x ) <-> -. ( b ` d ) = ( a ` d ) ) ) | 
						
							| 40 | 39 | elrab |  |-  ( d e. { x e. A | ( a ` x ) =/= ( b ` x ) } <-> ( d e. A /\ -. ( b ` d ) = ( a ` d ) ) ) | 
						
							| 41 | 34 40 | bitrdi |  |-  ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( d e. dom ( a \ b ) <-> ( d e. A /\ -. ( b ` d ) = ( a ` d ) ) ) ) | 
						
							| 42 | 41 | imbi1d |  |-  ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( ( d e. dom ( a \ b ) -> -. d R c ) <-> ( ( d e. A /\ -. ( b ` d ) = ( a ` d ) ) -> -. d R c ) ) ) | 
						
							| 43 |  | impexp |  |-  ( ( ( d e. A /\ -. ( b ` d ) = ( a ` d ) ) -> -. d R c ) <-> ( d e. A -> ( -. ( b ` d ) = ( a ` d ) -> -. d R c ) ) ) | 
						
							| 44 |  | con34b |  |-  ( ( d R c -> ( b ` d ) = ( a ` d ) ) <-> ( -. ( b ` d ) = ( a ` d ) -> -. d R c ) ) | 
						
							| 45 | 44 | imbi2i |  |-  ( ( d e. A -> ( d R c -> ( b ` d ) = ( a ` d ) ) ) <-> ( d e. A -> ( -. ( b ` d ) = ( a ` d ) -> -. d R c ) ) ) | 
						
							| 46 | 43 45 | bitr4i |  |-  ( ( ( d e. A /\ -. ( b ` d ) = ( a ` d ) ) -> -. d R c ) <-> ( d e. A -> ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) | 
						
							| 47 | 42 46 | bitrdi |  |-  ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( ( d e. dom ( a \ b ) -> -. d R c ) <-> ( d e. A -> ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) ) | 
						
							| 48 | 47 | ralbidv2 |  |-  ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( A. d e. dom ( a \ b ) -. d R c <-> A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) | 
						
							| 49 | 33 48 | anbi12d |  |-  ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( ( c e. dom ( a \ b ) /\ A. d e. dom ( a \ b ) -. d R c ) <-> ( ( c e. A /\ -. ( b ` c ) = ( a ` c ) ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) ) | 
						
							| 50 |  | anass |  |-  ( ( ( c e. A /\ -. ( b ` c ) = ( a ` c ) ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) <-> ( c e. A /\ ( -. ( b ` c ) = ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) ) | 
						
							| 51 | 49 50 | bitrdi |  |-  ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( ( c e. dom ( a \ b ) /\ A. d e. dom ( a \ b ) -. d R c ) <-> ( c e. A /\ ( -. ( b ` c ) = ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) ) ) | 
						
							| 52 | 51 | rexbidv2 |  |-  ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( E. c e. dom ( a \ b ) A. d e. dom ( a \ b ) -. d R c <-> E. c e. A ( -. ( b ` c ) = ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) ) | 
						
							| 53 | 5 52 | mpbid |  |-  ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> E. c e. A ( -. ( b ` c ) = ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) | 
						
							| 54 | 4 | ad2antrr |  |-  ( ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> S Or B ) | 
						
							| 55 | 21 | ffvelcdmda |  |-  ( ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( b ` c ) e. B ) | 
						
							| 56 | 16 | ffvelcdmda |  |-  ( ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( a ` c ) e. B ) | 
						
							| 57 |  | sotrieq |  |-  ( ( S Or B /\ ( ( b ` c ) e. B /\ ( a ` c ) e. B ) ) -> ( ( b ` c ) = ( a ` c ) <-> -. ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) ) ) | 
						
							| 58 | 57 | con2bid |  |-  ( ( S Or B /\ ( ( b ` c ) e. B /\ ( a ` c ) e. B ) ) -> ( ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) <-> -. ( b ` c ) = ( a ` c ) ) ) | 
						
							| 59 | 58 | biimprd |  |-  ( ( S Or B /\ ( ( b ` c ) e. B /\ ( a ` c ) e. B ) ) -> ( -. ( b ` c ) = ( a ` c ) -> ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) ) ) | 
						
							| 60 | 54 55 56 59 | syl12anc |  |-  ( ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( -. ( b ` c ) = ( a ` c ) -> ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) ) ) | 
						
							| 61 | 60 | anim1d |  |-  ( ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) /\ c e. A ) -> ( ( -. ( b ` c ) = ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) -> ( ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) ) | 
						
							| 62 | 61 | reximdva |  |-  ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( E. c e. A ( -. ( b ` c ) = ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) -> E. c e. A ( ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) ) | 
						
							| 63 | 53 62 | mpd |  |-  ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> E. c e. A ( ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) | 
						
							| 64 | 1 | wemaplem1 |  |-  ( ( b e. _V /\ a e. _V ) -> ( b T a <-> E. c e. A ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) ) | 
						
							| 65 | 64 | el2v |  |-  ( b T a <-> E. c e. A ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) | 
						
							| 66 | 1 | wemaplem1 |  |-  ( ( a e. _V /\ b e. _V ) -> ( a T b <-> E. c e. A ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) ) ) | 
						
							| 67 | 66 | el2v |  |-  ( a T b <-> E. c e. A ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) ) | 
						
							| 68 | 65 67 | orbi12i |  |-  ( ( b T a \/ a T b ) <-> ( E. c e. A ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) \/ E. c e. A ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) ) ) | 
						
							| 69 |  | r19.43 |  |-  ( E. c e. A ( ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) \/ ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) ) <-> ( E. c e. A ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) \/ E. c e. A ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) ) ) | 
						
							| 70 |  | andir |  |-  ( ( ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) <-> ( ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) \/ ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) ) | 
						
							| 71 |  | eqcom |  |-  ( ( b ` d ) = ( a ` d ) <-> ( a ` d ) = ( b ` d ) ) | 
						
							| 72 | 71 | imbi2i |  |-  ( ( d R c -> ( b ` d ) = ( a ` d ) ) <-> ( d R c -> ( a ` d ) = ( b ` d ) ) ) | 
						
							| 73 | 72 | ralbii |  |-  ( A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) <-> A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) | 
						
							| 74 | 73 | anbi2i |  |-  ( ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) <-> ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) ) | 
						
							| 75 | 74 | orbi2i |  |-  ( ( ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) \/ ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) <-> ( ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) \/ ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) ) ) | 
						
							| 76 | 70 75 | bitr2i |  |-  ( ( ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) \/ ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) ) <-> ( ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) | 
						
							| 77 | 76 | rexbii |  |-  ( E. c e. A ( ( ( b ` c ) S ( a ` c ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) \/ ( ( a ` c ) S ( b ` c ) /\ A. d e. A ( d R c -> ( a ` d ) = ( b ` d ) ) ) ) <-> E. c e. A ( ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) | 
						
							| 78 | 68 69 77 | 3bitr2i |  |-  ( ( b T a \/ a T b ) <-> E. c e. A ( ( ( b ` c ) S ( a ` c ) \/ ( a ` c ) S ( b ` c ) ) /\ A. d e. A ( d R c -> ( b ` d ) = ( a ` d ) ) ) ) | 
						
							| 79 | 63 78 | sylibr |  |-  ( ( ph /\ ( ( a e. U /\ b e. U ) /\ a =/= b ) ) -> ( b T a \/ a T b ) ) | 
						
							| 80 | 79 | expr |  |-  ( ( ph /\ ( a e. U /\ b e. U ) ) -> ( a =/= b -> ( b T a \/ a T b ) ) ) | 
						
							| 81 | 12 80 | biimtrrid |  |-  ( ( ph /\ ( a e. U /\ b e. U ) ) -> ( -. a = b -> ( b T a \/ a T b ) ) ) | 
						
							| 82 | 81 | orrd |  |-  ( ( ph /\ ( a e. U /\ b e. U ) ) -> ( a = b \/ ( b T a \/ a T b ) ) ) | 
						
							| 83 |  | 3orrot |  |-  ( ( a T b \/ a = b \/ b T a ) <-> ( a = b \/ b T a \/ a T b ) ) | 
						
							| 84 |  | 3orass |  |-  ( ( a = b \/ b T a \/ a T b ) <-> ( a = b \/ ( b T a \/ a T b ) ) ) | 
						
							| 85 | 83 84 | bitr2i |  |-  ( ( a = b \/ ( b T a \/ a T b ) ) <-> ( a T b \/ a = b \/ b T a ) ) | 
						
							| 86 | 82 85 | sylib |  |-  ( ( ph /\ ( a e. U /\ b e. U ) ) -> ( a T b \/ a = b \/ b T a ) ) | 
						
							| 87 | 11 86 | issod |  |-  ( ph -> T Or U ) |