Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( S We B /\ ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) ) -> S We B ) |
2 |
|
isof1o |
|- ( f Isom R , S ( A , B ) -> f : A -1-1-onto-> B ) |
3 |
|
f1ofo |
|- ( f : A -1-1-onto-> B -> f : A -onto-> B ) |
4 |
|
forn |
|- ( f : A -onto-> B -> ran f = B ) |
5 |
2 3 4
|
3syl |
|- ( f Isom R , S ( A , B ) -> ran f = B ) |
6 |
|
vex |
|- f e. _V |
7 |
6
|
rnex |
|- ran f e. _V |
8 |
5 7
|
eqeltrrdi |
|- ( f Isom R , S ( A , B ) -> B e. _V ) |
9 |
8
|
ad2antrl |
|- ( ( S We B /\ ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) ) -> B e. _V ) |
10 |
|
exse |
|- ( B e. _V -> S Se B ) |
11 |
9 10
|
syl |
|- ( ( S We B /\ ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) ) -> S Se B ) |
12 |
1 11
|
jca |
|- ( ( S We B /\ ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) ) -> ( S We B /\ S Se B ) ) |
13 |
|
weisoeq2 |
|- ( ( ( S We B /\ S Se B ) /\ ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) ) -> f = g ) |
14 |
12 13
|
sylancom |
|- ( ( S We B /\ ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) ) -> f = g ) |
15 |
14
|
ex |
|- ( S We B -> ( ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) -> f = g ) ) |
16 |
15
|
alrimivv |
|- ( S We B -> A. f A. g ( ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) -> f = g ) ) |
17 |
|
isoeq1 |
|- ( f = g -> ( f Isom R , S ( A , B ) <-> g Isom R , S ( A , B ) ) ) |
18 |
17
|
mo4 |
|- ( E* f f Isom R , S ( A , B ) <-> A. f A. g ( ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) -> f = g ) ) |
19 |
16 18
|
sylibr |
|- ( S We B -> E* f f Isom R , S ( A , B ) ) |