| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( S We B /\ ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) ) -> S We B ) | 
						
							| 2 |  | isof1o |  |-  ( f Isom R , S ( A , B ) -> f : A -1-1-onto-> B ) | 
						
							| 3 |  | f1ofo |  |-  ( f : A -1-1-onto-> B -> f : A -onto-> B ) | 
						
							| 4 |  | forn |  |-  ( f : A -onto-> B -> ran f = B ) | 
						
							| 5 | 2 3 4 | 3syl |  |-  ( f Isom R , S ( A , B ) -> ran f = B ) | 
						
							| 6 |  | vex |  |-  f e. _V | 
						
							| 7 | 6 | rnex |  |-  ran f e. _V | 
						
							| 8 | 5 7 | eqeltrrdi |  |-  ( f Isom R , S ( A , B ) -> B e. _V ) | 
						
							| 9 | 8 | ad2antrl |  |-  ( ( S We B /\ ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) ) -> B e. _V ) | 
						
							| 10 |  | exse |  |-  ( B e. _V -> S Se B ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( S We B /\ ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) ) -> S Se B ) | 
						
							| 12 | 1 11 | jca |  |-  ( ( S We B /\ ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) ) -> ( S We B /\ S Se B ) ) | 
						
							| 13 |  | weisoeq2 |  |-  ( ( ( S We B /\ S Se B ) /\ ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) ) -> f = g ) | 
						
							| 14 | 12 13 | sylancom |  |-  ( ( S We B /\ ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) ) -> f = g ) | 
						
							| 15 | 14 | ex |  |-  ( S We B -> ( ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) -> f = g ) ) | 
						
							| 16 | 15 | alrimivv |  |-  ( S We B -> A. f A. g ( ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) -> f = g ) ) | 
						
							| 17 |  | isoeq1 |  |-  ( f = g -> ( f Isom R , S ( A , B ) <-> g Isom R , S ( A , B ) ) ) | 
						
							| 18 | 17 | mo4 |  |-  ( E* f f Isom R , S ( A , B ) <-> A. f A. g ( ( f Isom R , S ( A , B ) /\ g Isom R , S ( A , B ) ) -> f = g ) ) | 
						
							| 19 | 16 18 | sylibr |  |-  ( S We B -> E* f f Isom R , S ( A , B ) ) |